论文阅读PP-yolo:An Effective and Efficient Implementation of Object Detector

PP-YOLO是一种基于YOLOv3的目标检测器,通过整合多种Tricks,实现了45.2%mAP的精度和72.9FPS的速度,超越了YOLOv4和EfficientDet。它使用ResNet50-Vd作为backbone,并引入了可变形卷积、特征金字塔网络等结构,结合LargerBatchSize、EMA、DropBlock等策略,实现了效率与效果的平衡。
摘要由CSDN通过智能技术生成

1、摘要

目标检测是计算机视觉研究的重要领域之一,在各种实际场景中起着至关重要的作用。在实际应用中,由于硬件的限制,往往需要牺牲准确性来保证检测器的推断速度。因此,必须考虑目标检测器的有效性和效率之间的平衡。本文的目标不是提出一种新的检测模型,而是实现一种效果和效率相对均衡的对象检测器,可以直接应用于实际应用场景中。考虑到YOLOv3在实际应用中的广泛应用,我们开发了一种新的基于YOLOv3的目标检测器。我们主要尝试结合现有的几乎不增加模型参数和FLOPs的各种技巧,在保证速度几乎不变的情况下,尽可能提高检测器的精度。由于本文的所有实验都是基于PaddlePaddle 进行的,所以我们称其为PP-yoLo。意思通过结合多种技巧。PP-YoLo可以更好地平衡效率(45.2% mAP)和效率(72.9 FPS),超过了目前最先进的检测器efficientdet和YOLOv4。
在这里插入图片描述
分析一下图(因为之前一直看不懂这种图):
看横坐标,pp-yolo的FPS最多为130+,超过所有,mAP也不低
看纵坐标:mAP最高为为45+时,仅次于efficientdet,FPS却比其将近翻了一番

PP-YOLO可达45.2% mAP,速度高达72.9 FPS!FPS和mAP均超越YOLOv4,FPS也远超过EfficientDet
注:
V100 :特斯拉V100的显卡
FPS:每秒传输的帧数

2、亮点

没有探索backbone及数据增强,没用NAS探索超参数
直接使用resnet为backbone,数据增强为mixup
在这里插入图片描述

3、结构

1、backbone:首先将yolo5中的backbone变为resnet50-vd,为了避免换了带来的性能降低,换resnet50-vd中的部分卷积为可变形卷积Deformable Convolutional Networks (DCN) 。DCN太多会影响推断时间,因此只用DCNs换了最后阶段的33卷积
DCN:本身不会显著增加模型中参数和FLOPs的数量,但是可能会影响推断时间
2、detection neck:
使用特征金字塔(FPN),并加上了横向连接
3、detection head:
使用1
1卷积核和3*3卷积核进行,输出3×(K+5),3个anchor,K个类别,5即坐标和confidence
4、损失:
交叉熵损失和L1损失

4、Tricks

Larger Batch Size
EMA :这里其实不是很理解34
DropBlock :10
IoU Loss:没有直接换成Iou loss,然是又加了一个计算损失的分支
IoU Aware
Grid Sensitive
Matrix NMS
CoordConv
SPP
Better Pretrain Model

Pruned-YOLO是一种利用模型修剪来学习高效物体检测器的方法。 物体检测是计算机视觉领域的重要任务之一,旨在从图像中准确地识别和定位出现的物体。然而,传统的物体检测器通常具有复杂的结构和大量的参数,导致它们在实时应用或资源受限的环境中效率不高。 为了解决这个问题,Pruned-YOLO采用了一种名为模型修剪的技术。模型修剪是一种通过删除不必要的参数来减小模型大小和计算量的方法。在Pruned-YOLO中,首先训练一个原始的YOLO模型,在这个模型中包含了大量的参数。然后,通过对这个模型进行剪枝操作,删除冗余的参数,从而得到一个修剪后的模型。 模型修剪的关键是确定哪些参数可以被安全地删除。在Pruned-YOLO中,采用了一种称为敏感度分析的方法来评估参数对于模型性能的重要性。通过计算每个参数对于模型损失函数的梯度,可以确定其敏感度。如果某个参数的敏感度较低,即梯度接近于零,那么这个参数可以被删除而不会对模型性能产生显著影响。 通过对YOLO模型进行修剪,Pruned-YOLO可以显著减少模型的大小和计算需求,从而提高物体检测的效率。实验证明,Pruned-YOLO在保持较高检测准确率的同时,将模型大小和计算量减少了约50%。这使得Pruned-YOLO成为了一种适用于边缘设备、嵌入式系统和实时应用的高效物体检测解决方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值