基于UNet的遥感图像处理新成果!保持高性能同时降低计算成本

基于UNet的遥感图像处理无论是在分割精度、计算效率还是在对抗图像中各种挑战的鲁棒性方面,都比传统方法更具优势。

具体点讲,UNet能自动提取图像特征,避免复杂的手工特征工程。它独特的编码器-解码器结构和跳跃连接能更有效地捕捉和融合多尺度信息,不仅提高了计算效率,还改善了处理精度。

以基于UNet框架的CM-Unet为例:

CM-Unet用于解决高分辨率遥感图像语义分割中的孔洞、遗漏和模糊边缘分割等问题。实验表明,CM-Unet具有62毫秒/幅的快速分割速度,且平均交并比高达90.4%,而浮点运算量仅为20.95 MFLOPs。

因此,基于UNet的遥感图像处理也是论文研究的热门方向之一。为方便各位获取灵感,本文分享最新的11种UNet+遥感创新方案,开源代码都整理了。论文可参考创新点做了简单提炼,具体工作细节可阅读原文。

论文原文以及开源代码需要的同学看文末

CM-Unet: A Novel Remote Sensing Image Segmentation Method Based on Improved U-Net

方法:论文提出了一种基于U-Net框架的新方法CM-Unet,用于解决高分辨率遥感图像语义分割中的孔洞、遗漏和模糊边缘分割等问题。该方法在编码网络中添加了通道注意机制和残差模块,以传递信息。在解码网络中提出了多特征融合机制,并用改进的子像素卷积方法替代传统的上采样操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值