Mamba与CNN相结合,作为24年AI顶会的新密码,在处理序列数据和图像数据时优势显著,也是提高模型计算效率、准确率等的利器!比如模型Weak-Mamb-UNet,就通过这种结构,实现了分割准确率高达99.63%的效果!
主要在于,Mamba通过动态加权机制,能够提供全局建模能力,而CNN则在局部特征提取方面表现出色。通过两者结合,能够实现更高效的特征提取。此外Mamba还避免了Transformer的二次计算复杂性,与CNN的结合在计算上更加高效。
为了让大家对该方法有全面深入的理解,找到自己论文的idea,我给大家准备了9种创新方法,原文和代码都有。
论文原文+开源代码需要的同学看文末
1.Weak-MMamba-UNet:Visual Mamba Makes CNN and ViT Work Better for Scribble-based Medical Image Segmentation
简述:本篇论文提出了一种名为Weak-MMamba-UNet的模型,通过视觉Mamba机制优化卷积神经网络(CNN)和视觉Transformer(ViT),用于基于涂鸦的医学图像分割。Weak-MMamba-UNet结合了CNN和ViT的优点,并引入了视觉Mamba机制来处理弱监督的涂鸦标注数据,从而提高了分割性能。具体而言,模型利用涂鸦标注作为提示,引导网络关注相关区域,增强了对医学图像中目标的定位和分割能力。实验结果表明,Weak-MMamba-UNet在多个医学图像分割任务中表现出色,显著提升了分割精度,展示了其在实际医学应用中的潜力和有效性。
2.CM-UNet: Hybrid CNN-Mamba UNet for Remote Sensing Image Semantic Segmentation
简述:本篇论文提出了一种名为CM-UNet的混合模型,用于遥感图像的语义分割。CM-UNet结合了卷积神经网络(CNN)和Mamba机制的优点,通过将这两种技术集成到UNet架构中,增强了模型的分割性能。具体而言,CM-UNet利用CNN的强大特征提取能力和Mamba机制的注意力机制,使模型能够更好地捕捉遥感图像中的细节和全局信息。实验结果表明,CM-UNet在多个遥感图像分割任务中表现优异,显著提升了分割精度和鲁棒性,展示了其在遥感图像处理中的应用潜力和优势。
3.U-Mamba Enhancing Long-range Dependency for Biomedical Image Segmentation
简述:本篇论文提出了一种名为U-Mamba的模型,旨在增强生物医学图像分割中的长程依赖性。U-Mamba通过将Mamba机制集成到UNet架构中,利用其强大的长程依赖捕捉能力,显著提升了分割性能。具体而言,U-Mamba利用Mamba机制的注意力机制,加强对远距离像素关系的建模,从而提高了对复杂生物医学图像中细节和全局结构的理解能力。实验结果表明,U-Mamba在多个生物医学图像分割任务中表现出色,显著提高了分割的准确性和鲁棒性,展示了其在实际医学应用中的巨大潜力和优势。
4.nnMamba: 3D Biomedical Image Segmentation, Classification and Landmark Detection with State Space Model
简述:本篇论文提出了一种名为nnMamba的模型,用于3D生物医学图像的分割、分类和标志点检测。nnMamba结合了状态空间模型,能够在三维图像数据中高效提取和利用特征。具体而言,nnMamba通过状态空间模型捕捉图像中的长程依赖关系和全局信息,从而提高分割、分类和标志点检测的精度。实验结果表明,nnMamba在多个3D生物医学图像任务中表现出色,显著提升了分割和分类的准确性,并且在标志点检测方面也取得了优异的效果,展示了其在实际医学应用中的巨大潜力和实用性。
关注下方《人工智能学起来》
回复“MaCNN”获取全部论文+开源代码
码字不易,欢迎大家点赞评论收藏