出场即称霸:CNN+医学图像分割!这高端局思路可得接稳了!

医学图像分割方向又来新突破啦!这次是ICRL 2025的投稿论文,提出了一种新型超轻量级CNN架构UltraLightUNet,在参数数量和计算复杂度上极为精简(分别减少333倍和123倍),同时保持了优异的分割性能!

这显然得益于CNN在医学图像分割中的诸多优势:不仅能自动提取图像特征,减少手工设计特征的复杂性;它端到端的训练方式还让模型可以直接从数据中学习,显著提高分割的准确性和效率!

因此对比传统,这种方法更适合处理复杂图像结构和噪声,是医疗图像领域未来的研究趋势,非常推荐有发文需求的同学考虑!我这边也整理好了12篇最新的CNN+医学图像分割论文给大家参考,代码基本都有,希望可以给各位的论文添砖加瓦。

全部论文+开源代码需要的同学看文末

UltraLightUNet: Rethinking U-Shaped Network with Multi-Kernel Lightweight Convolutions for Medical Image Segmentation

方法:论文提出一种超轻量级的多核U形网络UltraLightUNet,用于医学图像分割,通过引入多核倒残差(MKIR)和多焦点注意力机制(MKIRA)提高特征编码和细化能力,在多个医学图像分割基准测试中超越SOTA,特别是在DICE评分上超越了TransUNet,同时参数量和计算复杂度分别减少了333倍和123倍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值