Nature收割机:PINN改进!最新成果及开源代码已扒!

PINN改进实在太好发论文了!在Nature、Science,和NeurIPS、ICLR等顶会上,都是霸榜的存在。像是预测误差直降1000倍的PINN-Proj;求解速度狂飙100倍的PINCO;精度和计算效率兼备的PIBO……

这是因为,PINN应用非常广泛,但凡需要求解偏微分方程的领域,几乎都离不开它。比如流体力学、固体力学、材料科学、生物医学等等。但同时,其也面临计算复杂度高、处理高维数据困难、需要跨学科的专业知识等问题,因而对其的研究成为了迫切需求。

同时,应用领域丰富也意味着,结合不同的场景和数据集,很好做微创新,好出创新点。

目前热门的思路有:PINN自身的改进(自适应、加权损失函数……)、与其他技术结合(PINN+GNN、+LSTM、+贝叶斯、+迁移学习……)。每种创新思路,我都给大家准备了参考论文和源码,共33篇,一起来看!

论文原文+开源代码需要的同学看文末

PINN自身改进

 A Physics-Informed Composite Network for  Modeling of Electrochemical Process of  Large-Scale Lithium-Ion Batteries

内容:本文提出了一种用于大规模锂离子电池(LLBs)电化学过程建模的物理信息复合网络(PICN)。准确建模LLBs的电化学过程对于其设计和管理至关重要,但传统的二维物理模型因包含复杂的偏微分方程(PDEs)难以求解。PICN由四个深度神经网络(DNNs)组成,分别估计四个关键电化学状态的分布,其架构受PDE特征启发,能够以轻量级的DNN实现高精度。PICN结合物理知识和数据,在有限数据下也能准确估计,甚至可估算无法直接测量的电化学状态分布。此外,PICN还提出了基于低频信息的预训练策略和两阶段损失平衡策略,以解决训练中的收敛失败和损失不平衡问题。实验表明,PICN优于现有先进模型。

PINN+GNN

 PHYSICS-INFORMED GNN FOR NON-LINEAR CON STRAINED OPTIMIZATION: PINCO A SOLVER FOR THE  AC-OPTIMAL POWER FLOW

内容:这篇文章介绍了一种名为PINCO的方法,用于解决电力系统中的交流最优潮流(AC-OPF)问题。AC-OPF是一个非线性优化问题,传统方法如线性化求解或非线性规划求解存在计算负担大、不保证全局最优等局限性。PINCO结合了图神经网络(GNN)和物理信息神经网络(PINN)的思想,通过无监督学习的方式,在满足不等式约束的前提下,快速准确地求解AC-OPF问题。

PINN+贝叶斯

 Bayesian Physics-Informed Extreme Learning Machine for Forward  and Inverse PDE Problems with Noisy Data

内容:这篇文章提出了一种名为贝叶斯物理信息极限学习机的新方法,用于解决带有噪声数据的正向和逆向偏微分方程(PDE)问题。BPIELM结合了物理信息神经网络(PINN)和贝叶斯方法,通过在极限学习机(ELM)的输出层引入先验概率分布,并利用贝叶斯方法估计参数的后验分布,从而量化噪声数据带来的不确定性。与传统的物理信息极限学习机(PIELM)相比,BPIELM能够提供更准确的预测,并且在计算成本上显著低于物理信息神经网络(PINN)。

PINN+LSTM 

A Physics-Informed Event-Triggered Learning Approach to Long-Term Spacecraft Li-Ion Battery State-of-Charge Estimation

内容:本文提出了一种用于长期航天器锂离子电池荷电状态(SOC)估计的物理信息事件触发学习方法。该方法结合了物理信息和事件触发机制,通过利用电池的物理特性来增强学习模型的预测能力,并通过事件触发机制减少数据采集频率,从而提高计算效率和延长电池寿命。

PINN+傅里叶变换

 Global-local Fourier Neural Operator for  Accelerating Coronal Magnetic Field Model

内容:本文提出了一种名为全局-局部傅里叶神经算子(GL-FNO)的方法,用于加速太阳日冕磁场模型的计算。GL-FNO结合了全局和局部傅里叶神经算子,通过降采样的输入重建全局特征,并通过原始分辨率的输入捕捉细节特征。该方法在预测速度(几秒内完成预测,比传统磁流体动力学(MHD)模拟快20000倍以上)和预测可靠性方面表现出色,能够为理解空间天气动态提供有力支持。

PINN+注意力机制

 MAD-SCIENTIST: AI-BASED SCIENTIST SOLVING  CONVECTION-DIFFUSION-REACTION EQUATIONS US ING MASSIVE PINN-BASED PRIOR DATA

内容:本文提出了一种名为“MaD-Scientist”的基于人工智能的科学家模型,旨在利用物理信息神经网络(PINN)生成的大量先验数据解决对流-扩散-反应方程。该方法通过收集低成本的PINN近似先验数据,利用Transformer架构的自注意力和交叉注意力机制,在无需已知控制方程的情况下,以零样本学习的方式预测偏微分方程(PDE)的解。实验结果表明,即使在先验数据存在噪声的情况下,该模型依然能够稳健地进行预训练,并且对测试精度的影响微乎其微。

PINN+迁移学习

 Physics-Informed Deep Learning and Partial  Transfer Learning for Bearing Fault Diagnosis in  the Presence of Highly Missing Data

内容:本文提出了一种名为PTPAI的方法,用于解决轴承故障诊断中存在的数据缺失、类别不平衡和部分集故障诊断(PSFD)问题。该方法通过物理信息深度学习技术生成合成数据作为源域,并利用未标记且存在大量缺失数据的实际数据作为目标域。为应对类别不平衡和PSFD问题,PTPAI引入了RF-Mixup正则化技术来处理不平衡类别,并采用MK-MMSD和CDAN等技术来减少合成数据与实际数据之间的分布差异。此外,PTPAI还通过加权模块在类别和实例级别进行加权,以解决PSFD问题。实验结果表明,PTPAI在CWRU和JNU数据集上有效解决了这些问题,优于现有的先进方法。

PINN+多任务学习

 META-PINN: META LEARNING FOR IMPROVED NEURAL  NETWORK WAVEFIELD SOLUTIONS

内容:本文提出了一种名为Meta-PINN的方法,用于提高物理信息神经网络(PINN)在求解地震波场问题中的性能。该方法通过元学习(Meta Learning)技术训练一个通用的网络初始化,使其能够快速适应新的速度模型并获得准确的波场解。Meta-PINN框架首先利用元学习在多个速度模型上训练一个通用的网络初始化,然后将此初始化用于新的速度模型的PINN训练中,显著提高了收敛速度和结果精度。数值实验表明,与传统的随机初始化PINN相比,Meta-PINN在简单层状模型和复杂的Overthrust模型上均展现出更快的收敛速度和更高的波场解精度,且该方法可以与现有的优化技术结合以进一步提升性能。

码字不易,欢迎大家点赞评论收藏!

关注下方《AI科研技术派》

回复【改PINN】获取完整论文

👇

### 使用物理信息神经网络(PINN)进行寿命预测的应用实例 #### 锂离子电池健康状态监测中的应用 在锂离子电池的健康管理中,PINNs用于评估剩余使用寿命(RUL)[^2]。通过结合电化学模型和实验数据训练神经网络,可以实现对电池退化过程的有效建模。这种方法不仅能够捕捉到复杂的非线性关系,还能利用先验物理规律来指导学习过程。 ```python import tensorflow as tf from sklearn.model_selection import train_test_split # 假设X为特征矩阵,Y为目标变量,代表不同时间点下的容量衰减情况 X_train, X_test, Y_train, Y_test = train_test_split(X, Y) def build_model(): model = tf.keras.Sequential([ tf.keras.layers.Dense(64, activation='relu', input_shape=(input_dim,)), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(output_dim) ]) optimizer = tf.keras.optimizers.Adam() loss_fn = tf.keras.losses.MeanSquaredError() return model.compile(optimizer=optimizer, loss=loss_fn),model compiled_model,model = build_model() history = compiled_model.fit(X_train, Y_train, epochs=num_epochs,batch_size=batch_size) ``` 此代码片段展示了如何基于TensorFlow框架搭建一个简单的全连接层结构来进行RUL估计任务。实际项目里可能还需要加入更多定制化的组件比如自定义损失函数或者正则化项以适应特定应用场景的需求. #### 数据驱动与物理机制融合的优势 相比于传统仅依赖于历史记录的方法,在引入了物理学原理之后,即使是在缺乏大量样本的情况下也能获得较为可靠的预测效果。这是因为PINNs能够在一定程度上弥补由于测量噪声等因素造成的偏差,并且有助于提高泛化能力[^1]. 对于IT领域内的其他设备如服务器硬件、数据中心基础设施等同样适用此类方法论开展相应的研究工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值