20230702 正态分布的几个性质

正态分布以及高斯函数的定义

如果随机变量 X X X 的密度函数为
f μ , σ ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 , x ∈ R , σ > 0 f_{\mu, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\dfrac{(x-\mu)^2}{2 \sigma^2}}, \quad x \in \mathbb{R}, \sigma>0 fμ,σ(x)=σ2π 1e2σ2(xμ)2,xR,σ>0 X X X 服从参数为 ( μ , σ ) (\mu, \sigma) (μ,σ) 的正态分布 (normal distribution), 也称 Gauss分布, 记为 X ∼ N ( μ , σ ) X \sim N\left(\mu, \sigma\right) XN(μ,σ). 其密度函数的图像 ( μ = 0 , σ = 1 , 1.5 , 2.0 , 2.5 , 3.0 ) (\mu=0, \sigma=1,1.5,2.0,2.5,3.0) (μ=0,σ=1,1.5,2.0,2.5,3.0) 如 图 3.11 所示.

在这里插入图片描述

标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1)

密度函数为
ϕ ( x ) = 1 2 π e − x 2 2 , x ∈ R \phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R} ϕ(x)=2π 1e2x2,xR
分布函数为
Φ ( x ) = ∫ − ∞ x ϕ ( t ) d t \Phi(x)=\int_{-\infty}^x \phi(t) \mathrm{d} t Φ(x)=xϕ(t)dt

正态分布的性质1

(1) 密度函数关于 μ \mu μ 对称, 在 μ \mu μ 处取最大值, 最大值为 1 2 π σ \frac{1}{\sqrt{2 \pi} \sigma} 2π σ1.

正态分布的性质2

(2) 密度函数在 x = μ ± σ x=\mu \pm \sigma x=μ±σ 处有拐点.

正态分布的性质3

(3) 若 X ∼ N ( μ , σ ) X \sim N\left(\mu, \sigma\right) XN(μ,σ), 则 Y = X − μ σ ∼ N ( 0 , 1 ) Y=\dfrac{X-\mu}{\sigma} \sim N(0,1) Y=σXμN(0,1).
P ( Y ⩽ y ) = P ( X − μ σ ⩽ y ) = P ( X ⩽ μ + σ y ) = ∫ − ∞ μ + σ y f μ , σ ( x ) d x = 1 2 π σ ∫ − ∞ μ + σ y e − ( x − μ ) 2 2 σ 2   d x (  令  x − μ σ = t ) = 1 2 π ∫ ∞ y e − t 2 2   d t = Φ ( y ) \begin{aligned} P(Y \leqslant y) & =P\left(\frac{X-\mu}{\sigma} \leqslant y\right) \\ & =P(X \leqslant \mu+\sigma y) \\ & =\int_{-\infty}^{\mu+\sigma y} f_{\mu, \sigma}(x) \mathrm{d} x \\ & =\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\mu+\sigma y} e^{\frac{-(x-\mu)^2}{2 \sigma^2}} \mathrm{~d} x \quad\left(\text { 令 } \frac{x-\mu}{\sigma}=t\right) \\ & =\frac{1}{\sqrt{2 \pi}} \int_{\infty}^y e^{-\frac{t^2}{2}} \mathrm{~d} t \\ & =\Phi(y) \end{aligned} P(Yy)=P(σXμy)=P(Xμ+σy)=μ+σyfμ,σ(x)dx=2π σ1μ+σye2σ2(xμ)2 dx(  σxμ=t)=2π 1ye2t2 dt=Φ(y)

正态分布的性质4

(4) 1 2 π ∫ − ∞ + ∞ e − x 2 2   d x = 1 \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \mathrm{~d} x=1 2π 1+e2x2 dx=1.
事实上,
( 1 2 π ∫ − ∞ + ∞ e − x 2 2   d x ) 2 = ( 1 2 π ∫ − ∞ + ∞ e − x 2 2   d x ) ( 1 2 π ∫ − ∞ + ∞ e − y 2 2   d y ) = 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − z 2 + y 2 2   d x   d y = 1 2 π ∫ 0 2 π ∫ 0 + ∞ e − r 2 2 r   d θ d r = − e − r 2 2 ∣ 0 + ∞ = 1 \begin{aligned} \left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \mathrm{~d} x\right)^2 & =\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} \mathrm{~d} x\right)\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} \mathrm{~d} y\right) \\ & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{z^2+y^2}{2}} \mathrm{~d} x \mathrm{~d} y \\ & =\frac{1}{2 \pi} \int_0^{2 \pi} \int_0^{+\infty} e^{-\frac{r^2}{2}} r \mathrm{~d} \theta \mathrm{d} r \\ & =-\left.e^{-\frac{r^2}{2}}\right|_0 ^{+\infty}=1 \end{aligned} (2π 1+e2x2 dx)2=(2π 1+e2x2 dx)(2π 1+e2y2 dy)=2π1++e2z2+y2 dx dy=2π102π0+e2r2r dθdr=e2r2 0+=1

正态分布的性质5

(5) Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x).

正态分布的性质6: ( 0 , σ ) (0,\sigma) (0,σ)

σ ⟶ 0 \sigma \longrightarrow 0 σ0 时, 1 = lim ⁡ σ → 0 ∫ − ∞ + ∞ 1 2 π σ e − x 2 2 σ 2   d x = ∫ − ∞ + ∞ δ ( x ) d x \begin{aligned} 1 & =\lim _{\sigma \rightarrow 0} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^2}{2 \sigma^2}} \mathrm{~d} x \\ & =\int_{-\infty}^{+\infty} \delta(x) \mathrm{d} x \end{aligned} 1=σ0lim+2π σ1e2σ2x2 dx=+δ(x)dx

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值