生物医学研究中的统计建模:纵向数据分析

研究背景

为什么要在生物医学研究中进行纵向研究?这个问题的答案取决于生物医学研究的研究目标。纵向研究与横断面研究有根本的区别。横断面研究是在个体只被观察一次的情况下进行的。大多数调查都是横断面的,构建参考范围的研究也是如此。然而,纵向研究是那些调查随时间变化的研究,可能与干预有关。因此,纵向研究的主要特征是研究对象在一段时间内被重复测量。纵向研究的主要优势在于它能够区分在人口研究中被称为队列效应和年龄效应的因素。

研究主旨

论文探讨了生物医学研究中纵向数据的统计分析方法,强调了纵向研究相对于横断面研究的优势,如能区分队列和年龄效应。论文重点介绍了模型的概念、假设及参数解释,并未深入统计理论,而是提供了SAS软件中纵向模型的实际应用示例。

研究特点

本章讨论了生物医学研究中纵向数据分析的一些主要统计方法。我们对用于分析纵向数据的最常用统计模型以及基于这些模型的相关设计问题进行了详细的回顾。我们的重点在于纵向统计模型的概念化、与之相关的假设以及模型参数的解释。本章无意详述这些模型的统计估计和推断的详细理论。相反,我们通过实际应用展示了在SAS中实现一些基本的纵向模型。

文章出处 生物医学研究中的统计建模:纵向数据分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值