复变函数

复数

z = x + i y z=x+iy z=x+iy所对应 O z ‾ \overline{Oz} Oz满足 tan ⁡ θ = y x \tan\theta=\frac{y}{x} tanθ=xy

θ = A r g z , − π < a r g z ≤ π \theta=Argz,-\pi<argz\leq\pi θ=Argz,π<argzπ为主辐角

对于非零复数 z = r ( cos ⁡ θ + i sin ⁡ θ ) z=r(\cos\theta + i\sin\theta) z=r(cosθ+isinθ)

Euler公式

e i θ : = cos ⁡ θ + i sin ⁡ θ e^{i\theta}:=\cos\theta+i\sin\theta eiθ:=cosθ+isinθ

z = r e i θ , θ ∈ A r g z . z=re^{i\theta},\theta\in Arg z. z=reiθ,θArgz.


Example

把复数 1 − cos ⁡ φ + i sin ⁡ φ ( 0 < φ ≤ π ) 1-\cos \varphi+i \sin \varphi(0<\varphi \leq \pi) 1cosφ+isinφ(0<φπ)化为指数形式( e i θ : = cos ⁡ θ + i sin ⁡ θ e^{i\theta}:=\cos\theta+i\sin\theta eiθ:=cosθ+isinθ)!! i sin ⁡ θ i\sin\theta isinθ

1 − cos ⁡ φ + i sin ⁡ φ = 2 sin ⁡ 2 φ 2 + 2 i sin ⁡ φ 2 cos ⁡ φ 2 = 2 sin ⁡ φ 2 ( sin ⁡ φ 2 + i cos ⁡ φ 2 ) = 2 sin ⁡ φ 2 ( cos ⁡ ( π 2 − φ 2 ) + + i sin ⁡ ( π 2 − φ 2 ) ) = 2 sin ⁡ φ 2 e i ( π 2 − φ 2 ) \begin{aligned} 1-\cos \varphi+i \sin \varphi &=2 \sin ^{2} \frac{\varphi}{2}+2 i \sin \frac{\varphi}{2} \cos \frac{\varphi}{2}=2 \sin \frac{\varphi}{2}\left(\sin \frac{\varphi}{2}+i \cos \frac{\varphi}{2}\right) \\ &=2 \sin \frac{\varphi}{2}\left(\cos \left(\frac{\pi}{2}-\frac{\varphi}{2}\right)++i \sin \left(\frac{\pi}{2}-\frac{\varphi}{2}\right)\right)=2 \sin \frac{\varphi}{2} e^{i\left(\frac{\pi}{2}-\frac{\varphi}{2}\right)} \end{aligned} 1cosφ+isinφ=2sin22φ+2isin2φcos2φ=2sin2φ(sin2φ+icos2φ)=2sin2φ(cos(2π2φ)++isin(2π2φ))=2sin2φei(2π2φ)


Arg ⁡ ( z 1 z 2 ) = Arg ⁡ z 1 + Arg ⁡ z 2 , Arg ⁡ z 1 z 2 = Arg ⁡ z 1 − Arg ⁡ z 2 \operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}, \operatorname{Arg} \frac{z_{1}}{z_{2}}=\operatorname{Arg} z_{1}-\operatorname{Arg} z_{2} Arg(z1z2)=Argz1+Argz2,Argz2z1=Argz1Argz2

De Moivre公式:

( cos ⁡ θ + i sin ⁡ θ ) n = cos ⁡ n θ + i sin ⁡ n θ (\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta (cosθ+isinθ)n=cosnθ+isinnθ


z n = r n e i n θ = r n ( cos ⁡ n θ + i sin ⁡ n θ ) z^{n}=r^{n} e^{i n \theta}=r^{n}(\cos n \theta+i \sin n \theta) zn=rneinθ=rn(cosnθ+isinnθ)


Example

cos ⁡ 3 θ , sin ⁡ 3 θ \cos3\theta,\sin3\theta cos3θ,sin3θ利用 cos ⁡ θ , sin ⁡ θ \cos\theta,\sin\theta cosθ,sinθ来表示

cos ⁡ 3 θ + i sin ⁡ 3 θ = ( cos ⁡ θ + i sin ⁡ θ ) 3 = cos ⁡ 3 θ + 3 i cos ⁡ 2 θ sin ⁡ θ − 3 cos ⁡ θ sin ⁡ 2 θ − i sin ⁡ 3 θ \cos 3 \theta+i \sin 3 \theta=(\cos \theta+i \sin \theta)^{3}=\cos ^{3} \theta+3 i \cos ^{2} \theta \sin \theta-3 \cos \theta \sin ^{2} \theta-i \sin ^{3} \theta cos3θ+isin3θ=(cosθ+isinθ)3=cos3θ+3icos2θsinθ3cosθsin2θisin3θ


Def:

z n : = { w ∈ C , w n = z } \sqrt[n]{z}:=\left\{w \in \mathbb{C}, w^{n}=z\right\} nz :={wC,wn=z}


z n = { w k , k = 0 , … , n − 1 } \quad \quad \sqrt[n]{z}=\left\{w_{k}, k=0, \ldots, n-1\right\} nz ={wk,k=0,,n1}
其中 w k = r n e i θ + 2 k π n w_{k}=\sqrt[n]{r} e^{i \frac{\theta+2 k \pi}{n}} wk=nr einθ+2kπ


∣ z ∣ 2 = z z ˉ , |z|^{2}=z \bar{z}, z2=zzˉ, Re z = z + z ˉ 2 , Im ⁡ z = z − z ˉ 2 i z=\frac{z+\bar{z}}{2}, \operatorname{Im} z=\frac{z-\bar{z}}{2 i} z=2z+zˉ,Imz=2izzˉ

复平面上的点集

z 0 z_0 z0 ρ \rho ρ邻域: N ρ ( z 0 ) = { z ∈ C , ∣ z − z 0 ∣ ≤ ρ } N_{\rho}\left(z_{0}\right)=\left\{z \in \mathbb{C},\left|z-z_{0}\right| \leq \rho\right\} Nρ(z0)={zC,zz0ρ}

z 0 z_0 z0的去心 ρ \rho ρ邻域 N ρ ( z 0 ) − { z 0 } N_{\rho}\left(z_{0}\right)-\left\{z_{0}\right\} Nρ(z0){z0}

考虑点集 E E E,若平面上一点 z 0 z_0 z0的任何邻域

有界集E的直径

d ( E ) = sup ⁡ { ∣ z − z ′ ∣ ∣ z , z ′ ∈ E } d(E)=\sup \left\{\left|z-z^{\prime}\right| | z, z^{\prime} \in E\right\} d(E)=sup{zzz,zE}


B o l z a n o − W e i e r s t r a s s Bolzano-Weierstrass BolzanoWeierstrass定理

每一个有界无穷点集有聚点

C a n t o r Cantor Cantor定理

F n + 1 ⊂ F n , lim ⁡ n → ∞ d ( F n ) = 0 F_{n+1} \subset F_{n}, \lim \limits_{n \rightarrow \infty} d\left(F_{n}\right)=0 Fn+1Fn,nlimd(Fn)=0

有限覆盖定理

有界闭集的任何开覆盖存在有限子覆盖


简单曲线
{ x = x ( t ) y = y ( t ) ( α ≤ t ≤ β ) \left\{\begin{array}{l}{x=x(t)} \\ {y=y(t)}\end{array}(\alpha \leq t \leq \beta)\right. {x=x(t)y=y(t)(αtβ)

Jordan定理:

解析函数

处处连续处处不可微:

f ( z ) = z ˉ , Re ⁡ z , Im ⁡ z , ∣ z ∣ f(z)=\bar{z}, \operatorname{Re} z, \operatorname{Im} z,|z| f(z)=zˉ,Rez,Imz,z

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值