深度学习实战96-GCN网络的架构以及GCN在股票领域的应用,给出了数据和核心代码实现

大家好,我是微学AI,今天给大家介绍一下深度学习实战96-GCN网络的架构以及GCN在股票领域的应用,给出了数据和核心代码实现。在股票市场分析中,GCN模型展现出了强大的潜力,特别是在股价预测方面。这种基于图结构的深度学习方法能够有效捕捉股票之间的复杂关系,为我们提供了一个全新的视角来理解和预测股市动态。

GCN模型原理

图卷积的基本概念

图卷积神经网络(GCN)是一种专为处理 图结构数据 设计的神经网络模型。其核心思想是在图上模拟传统卷积操作,通过 聚合邻居节点信息 来更新中心节点的特征表示。这种方法巧妙地结合了节点的局部特征和全局拓扑结构,使模型能够在非欧几里得空间中有效捕获数据的本质属性。与标准卷积神经网络相比,GCN无需预先定义的空间排列,而是直接在图的节点上进行操作,充分利用了图的结构特性。

这种创新的设计使GCN在处理复杂关系网络、推荐系统和分子结构预测等领域展现出独特优势。

GCN的数学表示

GCN的数学表示是理解其工作原理的关键。在这个过程中,三个重要的矩阵扮演着核心角色:邻接矩阵A、度矩阵D和特征矩阵X。这些矩阵共同构成了GCN的基础数学框架,使得模型能够有效地处理图结构数据。

GCN的核心数学公式可以表示为:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值