大家好,我是微学AI,今天给大家介绍一下 人工智能技术在外骨骼机器人中的应用,发展历程与原理介绍 。外骨骼机器人是一种 套在人体外部的可穿戴机器人装置 ,旨在增强人类的身体能力和运动功能。其独特之处在于能够与人体紧密配合,通过先进的传感、控制和信息处理技术实现智能协同。这类机器人通常采用模块化设计,可根据不同应用场景选择性地覆盖全身或特定身体部位,如腿部、手臂等。
文章目录
一、外骨骼机器人概述
定义与特点
外骨骼机器人的核心优势在于其 高度的人机交互特性 和 自适应能力 。它们能够实时感知佩戴者意图并做出响应,同时还能根据环境变化自动调整动作策略,从而显著提升人类在各种复杂环境下的工作效率和生存能力。这种独特的设计理念使得外骨骼机器人在医疗康复、工业生产和军事等领域展现出广阔的应用前景。
发展历程
外骨骼机器人的发展历程可追溯至20世纪初,经历了三个重要阶段:
-
探索和实验阶段(1960-1980)
- 标志性事件:美国通用电气公司与康奈尔大学联合开发Hardiman可穿戴动力外骨骼
- 特点:以军用为主,但由于体积庞大、操作复杂等原因,难以投入实际应用
-
平稳发展阶段(1980-2000)
- 趋势:外骨骼机器人逐步走出实验室,企业界和科研机构共同推动技术发展和市场化
- 成果:出现多个原型产品,如1978年的Jogging Machine和1987年的Lifesuit Exoskeleton
-
技术突破性发展阶段(2000年至今)
- 催化剂:计算机、传感、材料和控制技术的快速发展
- 影响:外骨骼机器人进入技术突破和规模化应用阶段
- 商业化进展:多家公司成功上市,如ReWalk Robotics(2001年成立)、Cyberdyne(2004年成立)和Ekso Bionics(2005年成立)
这一发展历程展示了外骨骼机器人从概念到现实的演变过程,反映了科技进步如何推动新兴技术走向实用化和商业化。
二、人工智能在外骨骼机器人中的应用
机器学习算法
在外骨骼机器人控制系统的设计中,机器学习算法扮演着至关重要的角色。近年来,研究人员不断探索新的算法和技术,以提高外骨骼机器人的性能和适应性。以下是几种在外骨骼机器人应用中常用的机器学习算法及其最新研究成果:
-
深度强化学习 :一种特别适用于外骨骼机器人控制的算法。2024年6月,苏浩团队在《自然》杂志上发表的一项突破性研究表明,通过在计算机仿真环境中运用强化学习,可以显著提高外骨骼机器人的智能性和通用性。他们提出的“仿真中学习”框架实现了外骨骼控制器的智能化,使其能够适应多种动作模式,包括步行、跑步和爬楼梯等。
-
贝叶斯神经网络(BNN) :在外骨骼控制中也有出色表现。一项研究提出了一种基于神经肌肉骨骼(NMS)解算器的BNN模型,用于预测用户膝关节弯曲/伸展扭矩。该模型不仅能准确预测扭矩,还能量化预测的不确定性,为外骨骼用户界面的安全性提供了保障。
-
深度确定性策略梯度(DDPG)算法 :在外骨骼机械臂轨迹运动控制方面取得了良好效果。研究人员通过改进DDPG算法,提出了基于优先经验回放与分区奖励(PERDA)融合的PERDA-DDPG算法,有效提高了外骨骼机械臂的轨迹运动效果。
这些研究成果展示了机器学习算法在外骨骼机器人控制中的重要作用,为未来外骨骼机器人的智能化和个性化发展奠定了坚实的技术基础。通过持续优化和创新,我们可以期待看到更智能、更适应性强的外骨骼机器人在未来各个领域的广泛应用。
神经网络控制
在外骨骼机器人的控制领域,神经网络技术正发挥着越来越重要的作用。近期的研究成果充分展示了神经网络在外骨骼机器人控制中的巨大潜力,特别是在力跟踪控制方面取得了显著进展。
一项值得关注的研究提出了一种基于改进递归神经网络的下肢外骨骼机器人力跟踪控制方法。该方法结合了自适应径向基函数神经网络(ARBFNN)和固定时间收敛扰动观测器(FDO),形成了一个完整的控制框架,称为ARBFNN-FDO-ZNN。这种方法的主要特点是能够有效处理外骨骼系统的不确定性、外部干扰和人机交互力等问题,从而实现精确的力跟踪控制。
ARBFNN-FDO-ZNN控制方案的工作原理可以概括为以下几个关键步骤:
- 利用ARBFNN处理系统不确定性
- 设计FDO估计外部扰动
- 结合ZNN框架实现力跟踪控制
- 使用李雅普诺夫稳定性方法证明闭环信号收敛性
这种方法的优势在于具有较快的收敛速度和较小的跟踪误差峰值。通过与基于指数逼近律的滑模控制器(ERL-SMC)的对比,ARBFNN-FDO-ZNN方法展现出了更好的力跟踪性能。
此外,研究人员还通过实验证明了该控制方案在外骨骼机器人精确力跟踪控制问题上的有效性。这一研究成果为外骨骼机器人控制领域提供了一个新的思路,有望推动外骨骼机器人在医疗康复、工业辅助等领域的应用。
值得注意的是,这项研究不仅展示了神经网络在外骨骼机器人控制中的应用价值,还强调了多学科交叉的重要性。通过整合神经网络、控制理论和机器人学的知识,研究人员成功开发出了一种更为智能和高效的控制方法。这种跨学科的研究方法可能会成为未来外骨骼机器人发展的主要趋势,推动这一领域向更高水平迈进。
智能感知系统
在外骨骼机器人的智能感知系统中,多模态信息融合技术已成为提高人机交互质量的关键。近年来,研究人员在这方面取得了显著进展,为外骨骼机器人的人机协同控制奠定了坚实的基础。
一项值得关注的研究提出了一种基于多信息融合的下肢外骨骼机器人感知系统。该系统巧妙地结合了多种传感器数据,包括:
传感器类型 | 应用位置 | 功能 |
---|---|---|
惯性测量单元(IMU) | 关节处 | 获取关节角度 |
力敏电阻(FSR) | 足底 | 检测足底压力分布 |
力传感器 | 人机接口 | 测量人机交互力 |
为了提高数据处理的精度和效率,研究人员开发了两种专门的滤波算法:
- 变增益卡尔曼滤波算法 :应用于IMU传感器数据的姿态角度解算
- Savitzky-Golay滤波算法 :用于FSR压力数据的预处理
这两种算法的有效组合使得系统能够准确捕捉和分析复杂的步态特征,为人机协同控制提供了可靠的依据。
该感知系统的一个突出优点是其 多模态信息融合能力 。通过综合考虑关节角度、人机交互力和足底压力等多种感知量,系统能够全面反映穿戴者的运动状态和意图,从而实现对外骨骼机器人更加精细和智能的控制。这种多维度的数据融合不仅提高了感知系统的鲁棒性,还增强了外骨骼机器人对外部环境变化的适应能力。
实验结果令人鼓舞,表明该感知系统能够:
- 准确获取和融合关节角度、人机交互力和足底压力数据
- 实时识别穿戴者的步态特征
- 具备高精度、高稳定性的角度解算能力
- 有效处理交互力感知和FSR压力数据
这些研究成果为外骨骼机器人感知系统的优化提供了宝贵的参考,同时也推动了外骨骼机器人控制系统及策略的整体发展。通过不断完善智能感知系统,外骨骼机器人有望在医疗康复、工业辅助等多个领域实现更广泛、更高效的应用。
三、外骨骼机器人的基本结构
机械结构设计
在外骨骼机器人的机械结构设计中,关键组件包括 关节部分、长度调节结构、驱动电机和减速器。设计人员需基于人体解剖结构和运动机理,确定外骨骼的尺寸调节范围和自由度分配。为确保结构强度和安全性,常采用 有限元分析软件 进行机械强度校核和模态分析。这种设计方法确保了外骨骼机器人能够安全、有效地辅助人体运动,同时满足不同体型使用者的需求。
驱动系统
在外骨骼机器人的驱动系统设计中,主要有三种类型的驱动方式: 电机驱动、气压驱动和液压驱动。其中,电机驱动因其结构简单、易于控制等特点,在外骨骼机器人中应用最为广泛。电机驱动可分为两种方案:
- 直接安装盘式电动机于旋转关节
- 利用电动推杆驱动
气压和液压驱动虽然原理相似,但在性能上有明显差异。液压驱动相比气压驱动具有体积小、重量轻、结构紧凑等优势,但由于对油液温度敏感、系统效率较低等因素,在实际应用中面临一定挑战。这些驱动方式的选择直接影响外骨骼机器人的性能和适用场景,因此在设计时需要权衡各方面因素,选择最适合的驱动方案。
传感器系统
在外骨骼机器人的传感器系统中,关键传感器类型主要包括:
- 惯性测量单元(IMU) :用于测量机器人各关节的角速度和加速度。
- 力敏电阻(FSR) :安装在足底,用于检测地面反作用力。
- 力传感器 :安装在人机接口处,用于测量人机交互力。
这些传感器通过采集多模态信息,为外骨骼机器人提供全面的状态感知能力,支持精确的运动控制和人机交互。例如,IMU数据可用于实时计算关节角度,而FSR则有助于识别步态周期的不同阶段。力传感器则允许外骨骼感知用户的意图和需求