在之前的文章中,我已经为大家介绍了VaR模型。其中通过蒙特卡罗模拟法求取VaR的思路,大家还记得吗?①假定资产或资产组合价值的随机过程;②通过历史数据估计参数;③模拟多个随机序列,代入随机过程生成多个资产或资产组合的期末价值(看做期末价值的分布律);④根据这些期末价值找到某一置信水平下,可能的最低期末价值;⑤根据VaR公式,代入已知、已求值即可。
CreditMetrics模型也是运用VaR来衡量风险,且求解VaR的思路与VaR模型中的蒙特卡罗模拟法有一个共同点:获取资产或资产组合期末价值的分布律。不同的是:获取资产或资产组合期末价值的分布律的方法不同。那么接下来让我们一起走进CreditMetrics模型,感受它的魅力。
某公司持有某一信用资产或信用资产组合(如,贷款、债券等),这些信用资产或信用资产组合都是以债务人(公司)的信用作为担保的。那么考虑信用风险就至关重要了:如果债务人(公司)有违约的可能,有信用等级下降的可能,都会造成该信用资产或信用资产组合市场价值下降。
所以CreditMetrics模型认为:通过债务人(公司)的信用等级来确定信用资产或信用资产组合的市场价值分布律。具体步骤如下:
(1)确定债务人(公司)当前的信用等级
可通过专业评级公司来确定。通常有AAA、AA、A、BBB、BB、B、CCC级共7个等级。
(2)确定债务人(公司)期末的信用等级(包括违约)及对应概率
可通过专业评级公司来确定。通常认为期末可能有AAA、AA、A、BBB、BB、B、CCC、违约共8个等级。将所有“特定期限(通常指1年)内,一个信用等级向另一个等级转化的概率”集成的表格称为信用等级转移矩阵,类似下表:
AAA | AA | A | BBB | BB | B | CCC | 违约 | |
---|---|---|---|---|---|---|---|---|
AAA | 90% | 8% | 1.6% | 0.4% | 0 | 0 | 0 | 0 |
AA | 7% | 83% | 7.8% | 0.6% | 0.5% | 0.1% | 0.5% | 0.5% |
A | 0.9% | 3.1% | 91% | 4.6% | 0.3% | 0.1% | 0 | 0 |
BBB | 0.1% | 0.9% | 4.5% | 86% | 5% | 0.5% | 2.7% | 0.3% |
BB | 0.3% | 0.04% | 0.7% | 7% | 79% | 8% | 0.96% | 4% |
B | 0.9% | 0.6% | 0.6% | 2.6% | 0.3% | 75% | 11% | 9% |
CCC | 3.3% | 0.8% | 2.1% | 7.3% | 4.2% | 6% | 47% | 29.3% |
通过该表可知:若债务人(公司)当前信用等级为AA,那么经过特定期限(通常指1年),期末信用等级为AA的概率为83%,信用等级为B的概率为0.1%……依此类推。
(3)确定该信用资产或信用资产组合期末市场价值的分布
首先让我们看看期末(这里特指1年后)市场价值是如何表示的。
假设某贷款(n年末到期)在n年内的现金流为:第1年末流入利息 C1 C 1 ,第2年末流入利息 C2 C 2 ,……,第n年末流入利息 Cn C n 和本金 F F 。远期利率的构成为:第2年的远期利率为
,……,第n年的远期利率为 rn r n 。那么期末(这里特指1年后)该贷款的市场价值为: