【LLM】KV Cache

KV Cache(Key-Value Cache)是 Transformer 模型推理时的一种优化技术,用于减少计算量并提高效率。

背景

Transformer 模型在生成文本时,每次预测一个新 token 都需要处理整个输入序列,导致重复计算,尤其是在自回归生成任务中(如GPT)。随着序列长度增加,计算量呈平方级增长,影响推理速度。

KV Cache 的作用

KV Cache 通过缓存中间计算结果来避免重复计算,具体来说:

  • Key (K)Value (V) 是Transformer注意力机制中的两个矩阵,用于计算注意力权重和上下文表示。
  • 在推理时,模型可以缓存这些K和V的值,避免每次生成新token时重新计算。

工作原理

  1. 初始计算:对于输入序列,模型计算并存储每个位置的 K 和 V。
  2. 缓存使用:生成新token时,模型只需计算当前token的K和V,并与缓存的K和V结合,计算注意力权重和上下文表示。
  3. 更新缓存:将新token的K和V加入缓存,供后续步骤使用。

优势

  • 减少计算量:避免重复计算,显著提升推理速度。
  • 降低内存访问:减少对显存的频繁读写,提高效率。
  • 支持长序列生成:通过缓存机制,模型能更高效地处理长序列。

总结

KV Cache通过缓存中间结果,优化了Transformer模型的推理过程,提升了生成任务的效率,尤其在处理长序列时效果显著。

KV Cache 主要用于 自注意力(Self-Attention) 中,而不是 交叉注意力(Cross-Attention)


1. 自注意力(Self-Attention)

自注意力是 Transformer 的核心机制,用于计算序列中每个 token 与其他 token 的关系。在解码器中,自注意力的作用是让当前生成的 token 关注之前生成的所有 token。

  • KV Cache 的作用

    • 在自注意力中,模型需要计算每个 token 的 Key (K)Value (V)
    • 如果没有 KV Cache,每次生成新 token 时,模型都需要重新计算所有 token 的 K 和 V。
    • 通过 KV Cache,模型可以缓存之前 token 的 K 和 V,避免重复计算。
  • 适用场景

    • 自回归生成任务(如 GPT),模型逐词生成输出序列。
    • 每次生成新 token 时,只需要计算当前 token 的 K 和 V,并复用之前缓存的 K 和 V。

2. 交叉注意力(Cross-Attention)

交叉注意力通常用于 编码器-解码器架构 中(如 Transformer 用于机器翻译)。它的作用是让解码器的 token 关注编码器的输出。

  • KV Cache 的作用

    • 在交叉注意力中,Key (K) 和 Value (V) 来自编码器的输出,而 Query (Q) 来自解码器的当前 token。
    • 编码器的输出是固定的(因为输入序列是固定的),因此不需要缓存 K 和 V。
    • 每次生成新 token 时,模型只需要从编码器的输出中提取 K 和 V,而不需要重新计算。
  • 适用场景

    • 编码器-解码器任务(如机器翻译),编码器的输出是固定的,解码器逐词生成输出序列。
    • 由于编码器的输出不变,KV Cache 对交叉注意力的优化作用较小。

3. KV Cache 的具体应用

  • GPT 等纯解码器模型

    • 只使用自注意力,没有交叉注意力。
    • KV Cache 主要用于缓存自注意力中的 K 和 V。
  • 编码器-解码器模型(如 Transformer 用于翻译)

    • 解码器同时使用自注意力和交叉注意力。
    • KV Cache 主要用于自注意力部分,而交叉注意力部分通常不需要缓存。

总结

  • KV Cache 主要用于自注意力,而不是交叉注意力。
  • 在自注意力中,KV Cache 通过缓存之前 token 的 K 和 V,避免重复计算,从而提高推理效率。
  • 在交叉注意力中,由于编码器的输出是固定的,KV Cache 的优化作用较小。
### KV-Cache 技术在大型语言模型中的实现与优化 #### 背景介绍 缓存技术是现代计算架构中不可或缺的一部分,尤其是在高性能处理器设计中。例如,在Nehalem核心结构中,L1缓存被分为指令缓存数据缓存两部分[^1]。这种分离的设计可以有效减少访问冲突并提高性能。然而,对于大规模语言模型(LLMs),KV-Cache 的作用更为复杂且重要。 #### 大型语言模型中的 KV-Cache 原理 在 LLMs 中,KV-Cache 是一种用于加速推理过程的技术。具体来说,它通过存储先前生成 token 对应的键值对来避免重复计算注意力机制的结果。这一方法显著降低了计算开销,特别是在处理长序列时效果尤为明显。 - **Key Value 的定义**: 在 Transformer 架构下,输入经过多头自注意层后会生成 Keys Values。这些中间结果会被保存到 KV 缓冲区以便后续使用。 - **工作流程**: - 当前时刻 t 的新输入仅需与其自身的 Key 进行比较以及利用之前所有时间步共享的 Value 向量即可完成上下文理解。 - 此外,在解码阶段每新增一个词元,则更新一次对应的 K/V pair 并追加至已有列表末端形成滑动窗口形式管理历史记录。 ```python class KeyValueCache: def __init__(self, max_length): self.keys = [] self.values = [] self.max_length = max_length def append(self, key, value): if len(self.keys) >= self.max_length: self.keys.pop(0) self.values.pop(0) self.keys.append(key) self.values.append(value) def get_cache(self): return torch.stack(self.keys), torch.stack(self.values) ``` 上述代码片段展示了一个简单的 KV 缓存类实现方式[^4]。其中 `append` 方法负责向队列末尾增加新的键值对;而当达到预设最大长度限制时则移除最早加入的那一组数据项以维持固定大小范围内的高效检索操作特性。 #### 实现细节与优化策略 为了进一步提升效率还可以采取如下措施: - **分片存储**: 将整个缓存划分为多个较小的部分分别驻留在不同物理位置上从而降低单点负载压力同时增强并发能力。 - **压缩算法应用**: 针对某些特定场景可考虑采用无损压缩手段缩减实际占用空间进而间接改善整体表现水平。 关于大数据框架资源汇总方面也有专门整理好的清单可供参考学习[^2]。另外如果涉及到超大 XML 文件解析任务也可以借鉴相关经验技巧来进行流式加载处理[^3]。 #### 总结 综上所述,通过对 Large Language Models 应用合适的 KV-Caching 方案不仅能够带来明显的速度增益而且有助于控制内存消耗成本使之更加适合部署于生产环境中长期稳定运行下去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FOUR_A

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值