文献来源:Nowicki M, Wietrzykowski J. Low-effort place recognition with WiFi fingerprints using deep learning[C]//Automation 2017: Innovations in Automation, Robotics and Measurement Techniques 1. Springer International Publishing, 2017: 575-584.
数据库描述:UJIIndoorLoc数数据集覆盖了Jaume I大学的110m^2面积,可用于3栋建筑和4层之间的分类,以及以米为单位的纬度和经度测量的回归。这个数据集中有21048个样本,包含529个特征。在529个特征中,有520个带有强度值的wap和9种类型的标签。9种标签包括纬度、经度、楼层、空间、相对位置、用户、电话、时间戳。这里使用的分类和回归模型有k近邻、随机Forrest、决策树和支持向量机。特征选择也可以通过方差阈值化或主成分分析来完成。所有模型和特征选择都是通过sklearn Python包实现的。
摘要
使用WiFi信号进行室内定位是现有个人室内定位系统在移动设备上运行的主要定位方式。WiFi指纹识别也用于移动机器人,因为WiFi信号通常在室内可用,可以提供粗略的初始位置估计,也可以与其他定位系统一起使用。目前,最好的解决方案依赖于过滤、手动数据分析和耗时的参数调优来实现可靠和准确的定位。
在这项工作中,我们提出使用深度神经网络来显著降低定位系统设计的人力负担,同时仍然取得令人满意的结果。假设采用最先进的分层方法,我们采用深度神经网络系统进行建筑/楼层分类。
我们证明了堆叠自编码器可以有效地减少特征空间,以实现鲁棒和精确的分类。在公开可用的UJIIndoorLoc数据集上验证了所提出的架构,并将结果与其他解决方案进行了比较。
1 Introduction
室内定位是一项具有挑战性的任务,目前还没有适用于所有可能应用的通用解决方案。外部基础设施,如网络摄像机,在有限的区域内是有效的定位[1]。在大型建筑物中,最精确的agent姿态估计是通过激光扫描仪[2]、被动摄像机[3]或主动RGB-D传感器[4]获得的。使用这些传感器可以同时定位智能体和构建环境地图,从而解决同步定位和地图(SLAM)问题。不幸的是,激光扫描仪价格昂贵,而处理相机或RGB-D图像的计算要求很高,需要复杂的处理管道才能达到令人满意的结果[5]。在SLAM中,我们假设没有关于建筑结构的先验信息可用。然而,在实际应用中,通常可以在定位系统运行之前收集建筑物平面图。有了先验地图,我们就可以利用WiFi信号信息进行室内定位。
如今,WiFi网络在公共建筑、办公室、商场等无处不在。此外,几乎每个移动机器人都配备了WiFi适配器,用于连接互联网或远程操作。这些适配器也常见于手机和平板电脑中,可用于个人室内定位[6]。因此,WiFi信息可以用来提供粗略的全球位置估计,而不需要额外的外感传感器成本。阻碍这种解决方案在室内定位中广泛应用的一个重要问题是,在定位系统运行之前,需要对整个环境进行调查,以获得WiFi信号强度图。因此,在本文中,我们研究深度学习-一种最新且强大的机器学习范式是否可以从稀疏扫描地图上的WiFi数据提供全球位置识别解决方案,并且大大减少了手动调优的工作量。