ISO 26262小记--潜伏故障(latent fault)

ISO 26262标准对潜伏故障的定义

Latent Fault : multiple-point fault whose presence is not detected by a safety mechanism nor perceived by the driver within the multiple-point fault detection time interval.

从定义来看,潜伏故障是一个多点故障,它的出现,在多点故障探测时间间隔内,没有被安全机制探测到,也没有被驾驶员感知到。

在芯片设计中,以LDO为例,为LDO的输入增加了过压/欠压的安全机制,该安全机制形成的单点故障不会违反安全目标,但是如果此时,发生了过压/欠压,而安全机制没有检测到该故障,则形成了潜伏故障。在该过程中,可以认为潜伏故障本身并没有违反安全目标,而当另一个独立的硬件故障发生,即发生了过压/欠压,LDO输出违反了安全目标。

最后回顾一下哈
在这里插入图片描述
如果一个硬件模块,存在失效模式直接违反安全目标,如果没有安全机制检测,则直接形成单点故障,如果存在安全机制(诊断覆盖率),没有被安全机制覆盖的形成残余故障,被安全机制覆盖的部分,与其它独立的失效组合导致违反安全目标时,进一步考虑该多点故障是否能够被安全机制检测,如果不能够检测或感知,则形成潜伏故障。

内容概要:本文详细介绍了在COMSOL中使用不同参数估计方法(如最小二乘法、遗传算法和贝叶斯推断)来跟踪输出浓度并与实验值进行误差比较的过程。首先,文章简述了扩散方程及其在COMSOL中的应用背景。接着,分别阐述了最小二乘法、遗传算法和贝叶斯推断的具体实现步骤,包括目标函数的定义、参数设置以及优化求解器的选择。随后,讨论了如何通过后处理功能提取计算得到的浓度数据,并将其与实验值进行比较,以评估各方法的准确性。最后,强调了选择合适的方法对于提高模型精度的重要性,并分享了一些实践经验,如避免自动网格细化、使用动态权重调整等技巧。 适合人群:从事工程仿真、化学工程、材料科学等领域研究的技术人员,特别是那些需要利用COMSOL进行参数估计和模型验证的研究者。 使用场景及目标:① 使用COMSOL进行复杂物理现象(如扩散、反应等)的数值模拟;② 对比不同参数估计方法的性能,选择最适合特定应用场景的方法;③ 提高模型预测精度,确保仿真结果与实验数据的一致性。 其他说明:文中提供了大量实用的代码片段和技术细节,帮助读者更好地理解和应用这些方法。同时,作者还分享了许多实际操作中的经验和教训,提醒读者注意常见陷阱,如局部最优、参数相关性和数据预处理等问题。
### 开放式视觉故事叙述的背景 开放式视觉故事叙述(Open-ended Visual Storytelling, OVST)是一种多模态任务,旨在通过结合图像生成和自然语言处理技术,创建连贯的故事序列。潜在扩散模型(Latent Diffusion Models, LDMs)因其强大的生成能力,在这一领域得到了广泛应用。 LDMs的核心思想是通过对高维数据的空间进行降维操作,将其映射到低维潜空间中[^1]。这种设计不仅提高了计算效率,还增强了模型对复杂模式的学习能力。具体而言,LDMs能够在训练过程中捕捉输入数据的概率分布特征,并基于此实现高质量的内容生成。 --- ### 使用潜在扩散模型进行开放式视觉故事叙述的技术细节 #### 数据预处理与建模 为了支持OVST任务,通常需要构建一个多阶段的数据流水线。首先,原始图像被编码成潜变量表示;其次,这些潜变量会经过一系列条件化步骤,以便融入上下文信息(如文本描述)。最终,解码器负责将生成的潜向量重新转换回像素级输出[^2]。 以下是该流程的一个简化版本: ```python import torch from diffusers import StableDiffusionPipeline # 初始化管道并加载权重 pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") def generate_story(prompt_list): images = [] for i, prompt in enumerate(prompt_list): image = pipe(prompt).images[0] images.append(image) return images ``` 上述代码片段展示了如何利用Stable Diffusion框架逐帧生成一组关联图片。每张新图都以前一帧的结果为基础调整参数设置,从而形成叙事链条。 #### 场景融合与扩展 除了基本的画面渲染外,某些高级应用还会引入额外机制来增强交互性和灵活性。例如,有研究者尝试采用三平面表达法(Triplane Representation),允许动态增删特定物体实例而不破坏整体一致性。这种方法特别适合于模拟大规模环境变化或者执行精细编辑操作。 另外值得注意的是,尽管当前大多数方案侧重静态场景重建,但也有部分探索集中在运动矢量场估计方面——即所谓的Scene Flow问题。这类算法可以进一步提升时间维度上的连续性表现力。 --- ### 实验验证与发展前景 实际测试表明,当应用于真实世界户外数据集(比如SemanticKITTI)时,基于LDM架构开发出来的系统确实能取得令人满意的定量化指标得分以及主观审美评价效果。更重要的是,它具备良好的泛化性能,即使面对未曾见过的新类别也能保持稳定产出质量。 未来方向可能涉及以下几个层面:一是继续优化基础理论框架本身,二是加强跨学科协作以挖掘更多应用场景潜力,三是注重伦理考量确保AI创作成果正面影响社会文化发展进程。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值