AI+MCP的学习使用总结[openmanus、cursor mcp]

一、MCP 技术原理与核心价值
MCP(Model Context Protocol)的本质
MCP 是由 Anthropic 提出的开放协议,旨在为大语言模型(LLM)提供标准化工具调用框架。其核心原理是通过客户端-服务器架构,让 AI 模型安全、可控地访问外部工具和数据源,实现从“对话”到“执行”的跨越。

核心组件:
MCP 主机:用户与 AI 交互的应用程序(如 Cursor、Claude Desktop),负责发起请求 。
MCP 服务器:提供特定功能的本地或远程服务(如文件系统操作、API 调用),通过 Node.js 或 Python 实现 。
MCP 客户端:协调主机与服务器的通信,采用 JSON-RPC 2.0 协议支持双向交互。

二、OpenManus 本地部署实践

  1. 部署流程(以 Windows 为例)
    环境准备:安装 Python 3.12 。
    模型配置:deepseek-chat模型API服务 。
    服务启动:运行 python main.py,实现与 deepseek的连接。
    主要使用了浏览器功能,每次执行都是按照一个flow来执行流程,会自动找网站进行数据抓取,对抓取到的数据进行统计和输出。体验效果不那么震撼,每次执行耗时很久,准确度也不太高。

三、Cursor 的 MCP 配置与工具开发

  1. MCP 服务器配置
    工具发现:通过 Smithery.ai 平台获取 MCP 服务(如文件系统、Git 工具)。
    安装示例:添加 Web Search 工具时,使用命令
 npx -y @smithery/cli@latest run @mzxrai/mcp-webresearch。
  1. 自定义 MCP 工具开发
    Python 编写mcp服务端引入server.fastmcp(HTTP工具):
from mcp.server.fastmcp import FastMCP  
import httpx  
mcp = FastMCP("HttpServer")  
@mcp.tool()  
async def execute_http(args: str) -> str:    

注册调用:在 Cursor 的 mcp.json 中添加工具路径,通过自然语言指令触发。

四、基于Cursor MCP 协议的使用体验

  1. 统一调度能力
    MCP(Model Context Protocol)通过标准化工具调用接口,为 AI 提供了全局视角的 工具编排框架。

  2. 工具发现机制:Cursor 通过 MCP 客户端实时感知已注册的所有工具(如数据库查询、http接口调用等),并将工具功能描述嵌入模型上下文 。

  3. 请求路由机制:模型根据用户意图生成 JSON-RPC 调用指令,MCP 客户端自动匹配最佳工具并执行操作。例如,用户要求“根据接口返回值去查询当前企业下的项目”,模型会依次调用HTTP工具、数据库查询。

  4. 结果聚合机制:各工具执行结果通过 MCP 协议返回至模型上下文,形成任务链的连贯输入输出 。

五、LLM 的意图识别与任务分解能力
大语言模型(如 Claude、Gemini)的 推理能力 是自动编排的核心驱动力:

  1. 语义解析:模型通过 链式思维(CoT)提示技术 将复杂问题分解为原子任务,每个子任务触发特定工具调用。

  2. 工具匹配:基于工具的功能描述(模型动态选择工具组合。例如在代码生成场景。

六、感想
Cursor 的 Agent 工作模式 已经实现了任务编排的自动化。
目前模型支持的完整度:Claude > gpt > deepseek
相较于传统的流程agent配置,智能流程才是未来AI的发展方向。

七、参考资料

工具/平台用途
Smithery.aiMCP 服务发现平台
glama.aiMCP 服务发现平台
pulsemcp.comMCP 服务发现平台
### 关于 Cursor MCP 的定义 Cursor MCP 是指一种特定类型的多计算平台管理程序,在信息技术环境中用于管理和协调多个计算资源。这种技术允许在一个集中化的平台上控制和分配不同种类的计算任务,从而提高效率并简化操作流程[^1]。 ### 使用场景 在实际应用中,Cursor MCP 可以被部署来支持大规模的数据处理需求。通过这种方式,企业能够更灵活地响应业务变化,并且可以优化硬件利用率。例如,在云计算服务提供商处,MCP 能够帮助自动化虚拟机实例的创建、配置以及销毁过程,确保资源按需分配给客户[^2]。 ### 面临的问题 然而,在实施 Cursor MCP 解决方案时也可能遇到一些挑战。其中包括但不限于安全性考量——如何保护敏感数据免受未授权访问;性能瓶颈——当并发请求过多时可能出现延迟增加的情况;还有兼容性问题——某些旧版应用程序可能无法很好地运行在此类新型架构之上[^3]。 ```python # Python 示例代码展示如何连接到一个假设中的 Cursor MCP API 来获取当前活动节点列表 import requests def get_active_nodes(api_url): response = requests.get(f"{api_url}/nodes/active") if response.status_code == 200: return response.json() else: raise Exception("Failed to fetch active nodes") try: api_endpoint = "https://example.com/api/v1" active_node_list = get_active_nodes(api_endpoint) print(active_node_list) except Exception as e: print(e) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值