\qquad
稳定性的研究对象是系统的运动,是系统运动受到扰动后的一种重要性质。系统的运动可以通过一组向量的变化来完全充分的表现出来,这组向量成为系统的状态向量,记为
x
1
,
x
2
,
⋯
 
,
x
n
x_{1},x_{2},\cdots,x_{n}
x1,x2,⋯,xn,状态变量的向量形式
x
=
[
x
1
,
x
2
,
⋯
 
,
x
n
]
T
x=[x_{1},x_{2},\cdots,x_{n}]^{T}
x=[x1,x2,⋯,xn]T为状态向量。
\qquad
系统的运动方程常表示为一阶微分方程组形式:
x
˙
i
=
f
i
(
t
,
x
1
,
⋯
 
,
x
n
)
,
i
=
1
,
⋯
 
,
n
\dot{x}_{i}=f_{i}(t,x_{1},\cdots,x_{n}),\quad i=1,\cdots,n
x˙i=fi(t,x1,⋯,xn),i=1,⋯,n其中,
x
1
,
x
2
,
⋯
 
,
x
n
x_{1},x_{2},\cdots,x_{n}
x1,x2,⋯,xn是
t
t
t的未知函数,
f
1
,
⋯
 
,
f
n
f_{1},\cdots,f_{n}
f1,⋯,fn是
t
,
x
1
,
x
2
,
⋯
 
,
x
n
t,x_{1},x_{2},\cdots,x_{n}
t,x1,x2,⋯,xn的已知函数。化简为向量形式,即
x
˙
=
f
(
t
,
x
)
(
1
)
\dot{x}=f(t,x)\qquad (1)
x˙=f(t,x)(1)其中
t
∈
R
,
x
=
(
x
1
,
⋯
 
,
x
n
)
T
∈
R
n
t\in \boldsymbol{R},x=(x_{1},\cdots,x_{n})^{T}\in \boldsymbol{R}^{n}
t∈R,x=(x1,⋯,xn)T∈Rn(n维实欧式空间),
f
=
(
f
1
,
⋯
 
,
f
n
)
∈
R
n
f=(f_{1},\cdots,f_{n})\in \boldsymbol{R}^{n}
f=(f1,⋯,fn)∈Rn,即
f
:
Ω
⊆
R
n
+
1
→
R
n
f: \Omega\subseteq \boldsymbol{R}^{n+1}\to \boldsymbol{R}^{n}
f:Ω⊆Rn+1→Rn
\qquad
假设
x
=
φ
(
t
)
x=\varphi(t)
x=φ(t)是定义在时间开区间
I
=
(
a
,
b
)
⊂
R
I=(a,b)\subset\boldsymbol{R}
I=(a,b)⊂R上的可微函数(
I
I
I可以是有限区间或者无限区间),对于一切
t
∈
I
t\in I
t∈I,有
(
t
,
φ
(
t
)
)
∈
Ω
⊆
R
(t,\varphi(t))\in\Omega\subseteq\boldsymbol{R}
(t,φ(t))∈Ω⊆R,并满足:
φ
˙
(
t
)
=
f
(
t
,
φ
(
t
)
)
\dot{\varphi}(t)=f(t,\varphi(t))
φ˙(t)=f(t,φ(t))
\qquad
成立,称
φ
(
t
)
\varphi(t)
φ(t)为
I
I
I的一个解。解
x
=
φ
(
t
)
x=\varphi(t)
x=φ(t)在
(
t
,
x
)
(t,x)
(t,x)-空间的几何图形的一条曲线称为式(1)的积分曲线或系统的轨线。
\qquad
运动的稳定性通常指平衡状态是稳定的,刚体处于静止的平衡状态,受到小的扰动力的作用偏离了平衡位置,仍能回到原来的位置或原来位置的附近,反之为不稳定。考察微分方程组:
x
˙
=
f
(
t
,
x
)
x
(
t
0
)
=
x
0
(
2
)
\dot{x}=f(t,x)\\ x(t_{0})=x_{0} \qquad(2)
x˙=f(t,x)x(t0)=x0(2)其中,时间
t
t
t属于开区间
I
=
(
t
1
,
t
2
)
(
t
1
≥
−
∞
;
t
2
≤
+
∞
)
;
I =(t_{1},t_{2})(t_{1}\ge-\infty;t_{2}\leq+\infty);
I=(t1,t2)(t1≥−∞;t2≤+∞);状态向量
x
∈
Ω
⊂
R
n
;
f
:
I
×
Ω
∈
R
n
+
1
→
R
n
;
f
(
t
,
x
)
x\in\Omega\subset\boldsymbol{R}^{n};f:I\times\Omega\in\boldsymbol{R}^{n+1}\to\boldsymbol{R}^{n};f(t,x)
x∈Ω⊂Rn;f:I×Ω∈Rn+1→Rn;f(t,x)是连续的向量函数。
微分方程解存在的唯一性 (利普西茨条件)若
∀
x
,
y
∈
Ω
,
∀
t
∈
I
,
∃
\forall x,y\in\Omega,\forall t\in I,\exists
∀x,y∈Ω,∀t∈I,∃常数
L
>
0
L>0
L>0使得
∣
∣
f
(
t
,
x
)
−
f
(
t
,
y
)
∣
∣
≤
L
∣
∣
x
−
y
∣
∣
||f(t,x)-f(t,y)||\leq L||x-y||
∣∣f(t,x)−f(t,y)∣∣≤L∣∣x−y∣∣
\qquad
则称
f
f
f在
I
×
Ω
I\times\Omega
I×Ω上满足利普西茨条件(简称利氏条件)称
L
L
L为
f
f
f在
Ω
\Omega
Ω上的利氏常数。显然,如果
f
i
(
t
,
x
)
f_{i}(t,x)
fi(t,x)的所有偏导数都存在,且雅可比矩阵
∂
f
∂
x
\frac{\partial f}{\partial x}
∂x∂f在
I
×
Ω
I\times\Omega
I×Ω上有界,即
∥
∂
f
∂
x
∥
≤
K
\begin{Vmatrix} \frac{\partial f}{\partial x} \end{Vmatrix}\leq K
∥∥∂x∂f∥∥≤K其中,
K
K
K为某一正数,则满足利氏条件。
\qquad
解的存在唯一性定理 若
f
(
t
,
x
)
=
[
f
1
(
t
,
x
)
,
⋯
 
,
f
n
(
t
,
x
)
]
T
f(t,x)=[f_{1}(t,x),\cdots,f_{n}(t,x)]^{T}
f(t,x)=[f1(t,x),⋯,fn(t,x)]T在
I
×
Ω
I\times\Omega
I×Ω上连续,且满足利氏条件,则
∀
(
t
0
,
x
0
)
∈
I
×
Ω
\forall(t_{0},x_{0})\in I\times\Omega
∀(t0,x0)∈I×Ω,存在常数
t
∗
>
0
t^{*}>0
t∗>0,使得区间
[
t
0
−
t
∗
,
t
0
+
t
∗
]
[t_{0}-t^{*},t_{0}+t^{*}]
[t0−t∗,t0+t∗]内存在唯一解
x
(
t
,
t
0
,
x
0
)
x(t,t_{0},x_{0})
x(t,t0,x0)满足
d
(
t
,
t
0
,
x
0
)
d
t
=
f
(
t
,
x
(
t
,
t
0
,
x
0
)
)
x
(
t
0
,
t
0
,
x
0
)
=
x
0
\frac{d(t,t_{0},x_{0})}{dt}=f(t,x(t,t_{0},x_{0}))\\ x(t_{0},t_{0},x_{0})=x_{0}
dtd(t,t0,x0)=f(t,x(t,t0,x0))x(t0,t0,x0)=x0的解是唯一存在的。
解对初值与参数的连续依赖性与可微性 假设解的存在唯一性定理成立,有如下结论:
\qquad
(1) 若式(2)两个解
x
(
1
)
(
t
)
=
x
(
t
,
t
0
,
x
0
(
1
)
)
,
x
(
2
)
(
t
)
=
x
(
t
,
t
0
,
x
0
(
2
)
)
x^{(1)}(t)=x(t,t_{0},x^{(1)}_{0}),x^{(2)}(t)=x(t,t_{0},x^{(2)}_{0})
x(1)(t)=x(t,t0,x0(1)),x(2)(t)=x(t,t0,x0(2))在
[
t
0
,
t
1
]
[t_{0},t_{1}]
[t0,t1]上均有定义,均位于
Ω
\Omega
Ω内,则
∀
ϵ
>
0
,
∃
δ
>
0
\forall\epsilon>0,\exists\delta>0
∀ϵ>0,∃δ>0,当
∣
∣
x
0
(
1
)
−
x
0
(
2
)
∣
∣
<
δ
||x_{0}^{(1)}-x_{0}^{(2)}||<\delta
∣∣x0(1)−x0(2)∣∣<δ在
[
t
0
,
t
1
]
[t_{0},t_{1}]
[t0,t1]内有
∣
∣
x
(
1
)
(
t
)
−
x
(
2
)
(
t
)
∣
∣
<
ϵ
||x^{(1)}(t)-x^{(2)}(t)||<\epsilon
∣∣x(1)(t)−x(2)(t)∣∣<ϵ成立。
\qquad
(2) 若
∂
f
i
∂
x
j
(
i
,
j
=
1
,
2
,
⋯
 
,
n
)
\frac{\partial f_{i}}{\partial x_{j}}(i,j=1,2,\cdots,n)
∂xj∂fi(i,j=1,2,⋯,n)连续,则
∂
x
i
(
t
,
t
0
,
x
0
)
∂
x
j
0
(
i
,
j
=
1
,
2
,
⋯
 
,
n
)
\frac{\partial x_{i}(t,t_{0},x_{0})}{\partial x_{j0}}(i,j=1,2,\cdots,n)
∂xj0∂xi(t,t0,x0)(i,j=1,2,⋯,n)也连续。
李雅普诺夫稳定性的定义
\qquad
一个系统的轨迹有可能只是一个单一的点。如果系统的初始值取在这个点上,系统状态将保持在这个点上,则称该点为平衡点。如果系统初值选取为某个状态
x
e
x_{e}
xe,系统轨线
x
(
t
)
x(t)
x(t)将在未来时间内一直保持在
x
e
x_{e}
xe,则称为系统的一个平衡状态(或平衡点)。
\qquad
李雅普诺夫稳定性 设原点为系统的平衡点则称系统的零平衡点是李雅普诺夫稳定的。如果对于任意的
ϵ
>
0
\epsilon>0
ϵ>0,都存在
δ
(
ϵ
,
t
0
)
>
0
\delta(\epsilon,t_{0})>0
δ(ϵ,t0)>0,使得只要初始值
x
0
x_{0}
x0选取在球域
∣
∣
x
0
∣
∣
≤
δ
(
ϵ
,
t
0
)
||x_{0}||\leq\delta(\epsilon,t_{0})
∣∣x0∣∣≤δ(ϵ,t0)内,已
x
0
x_{0}
x0为初值的解对于整个时间域
t
0
<
t
<
∞
t_{0}<t<\infty
t0<t<∞都在以原点为球心以
ϵ
\epsilon
ϵ为半径的球域内(不稳定即在球域外),即
∣
∣
x
(
t
,
t
0
,
x
0
)
∣
∣
≤
ϵ
,
t
≥
t
0
||x(t,t_{0},x_{0})||\leq\epsilon,\qquad t\ge t_{0}
∣∣x(t,t0,x0)∣∣≤ϵ,t≥t0
\qquad
吸引性 如果存在
δ
(
t
0
)
>
0
\delta(t_{0})>0
δ(t0)>0,当
∣
∣
x
0
∣
∣
≤
δ
(
t
0
)
||x_{0}||\leq\delta(t_{0})
∣∣x0∣∣≤δ(t0)时,有
l
i
m
t
→
∞
x
(
t
,
t
0
,
x
0
)
=
0
\mathop{lim}\limits_{t\to\infty}x(t,t_{0},x_{0})=0
t→∞limx(t,t0,x0)=0
\qquad
则称系统
x
˙
=
f
(
t
,
x
)
\dot{x}=f(t,x)
x˙=f(t,x)的零平衡点是吸引的。即当初始状态选定在以零点为球心的某一个球域内时,系统的运动终将趋近于零点。描述系统运动趋近平衡点的程度与什么相关(趋近平衡点的速度受什么影响)。
∃
δ
(
t
0
)
>
0
\exists\delta(t_{0})>0
∃δ(t0)>0,当
∣
∣
x
0
∣
∣
≥
δ
(
t
0
)
||x_{0}||\ge\delta(t_{0})
∣∣x0∣∣≥δ(t0)时,
∀
ϵ
>
0
,
∃
T
(
ϵ
,
t
0
,
x
0
)
\forall\epsilon>0,\exists T(\epsilon,t_{0},x_{0})
∀ϵ>0,∃T(ϵ,t0,x0),对于
∀
t
≥
t
0
+
T
(
ϵ
,
t
0
,
x
0
)
\forall t\ge t_{0}+T(\epsilon,t_{0},x_{0})
∀t≥t0+T(ϵ,t0,x0),有
∣
∣
x
(
t
,
t
0
,
x
0
)
∣
∣
<
ϵ
||x(t,t_{0},x_{0})||<\epsilon
∣∣x(t,t0,x0)∣∣<ϵ。
\qquad
一致吸引 若吸引型定义中
T
T
T仅依赖
ϵ
\epsilon
ϵ,而不依赖
t
0
,
x
0
t_{0},x_{0}
t0,x0,则称原点是一致吸引的,即
x
(
t
)
x(t)
x(t)趋向于零平衡点的速度仅与
ϵ
\epsilon
ϵ有关,而与
t
0
,
x
0
t_{0},x_{0}
t0,x0无关,即
∀
ϵ
>
0
,
∃
T
(
ϵ
)
\forall\epsilon>0,\exists T(\epsilon)
∀ϵ>0,∃T(ϵ),对于
∀
t
≥
t
0
+
T
(
ϵ
)
\forall t\ge t_{0}+T(\epsilon)
∀t≥t0+T(ϵ),有
∣
∣
x
(
t
,
t
0
,
x
0
)
∣
∣
<
ϵ
||x(t,t_{0},x_{0})||<\epsilon
∣∣x(t,t0,x0)∣∣<ϵ。若
δ
(
t
0
)
\delta(t_{0})
δ(t0)可任意大,则吸引和一致吸引分别为全局吸引和全局一致吸引。
\qquad
渐近稳定和全局渐近稳定 如果:(1)零平衡点为稳定的(2)零平衡点分别为吸引、全局吸引,则分别称系统的解对零平衡点为渐近稳定和全局渐近稳定。一致渐近稳定如果(1)零平衡点为一致稳定(2)零平衡点是一致吸引,则称系统的解对于零平衡点为一致渐近稳定。全局一致渐近稳定如果(1)零平衡点为一致渐近稳定点。(2)零平衡点是全局一致吸引的。(3)方程所有的解是一致有界的,即
∀
r
>
0
,
∃
B
(
r
)
>
0
\forall r>0,\exists B(r)>0
∀r>0,∃B(r)>0,当
∣
∣
x
(
t
0
)
∣
∣
≤
r
||x(t_{0})||\leq r
∣∣x(t0)∣∣≤r时,则对于所有的
t
≥
t
0
t\ge t_{0}
t≥t0,有
∣
∣
x
(
t
,
t
0
,
x
0
)
∣
∣
≤
B
(
r
)
||x(t,t_{0},x_{0})||\leq B(r)
∣∣x(t,t0,x0)∣∣≤B(r)。
\qquad
拉塞尔不变定理 设
Ω
\Omega
Ω为紧集,从
Ω
\Omega
Ω出发的方程
x
˙
=
f
(
x
)
\dot{x}=f(x)
x˙=f(x)的解对于
t
>
0
t>0
t>0均停留在
Ω
\Omega
Ω内,如果存在函数
V
:
Ω
→
R
V:\Omega\to\boldsymbol{R}
V:Ω→R是连续可微的,在
Ω
\Omega
Ω中
V
˙
≤
0
\dot{V}\leq 0
V˙≤0,又设
E
=
{
x
∣
V
˙
(
x
)
=
0
,
x
∈
Ω
}
,
M
⊂
E
E=\{x|\dot{V}(x)=0,x\in\Omega\},M\subset E
E={x∣V˙(x)=0,x∈Ω},M⊂E为
E
E
E的最大不变集,则对于
∀
x
0
∈
Ω
\forall x_{0}\in\Omega
∀x0∈Ω,当
t
→
∞
t\to\infty
t→∞时,有
x
(
t
,
x
0
)
→
M
x(t,x_{0})\to M
x(t,x0)→M。
\qquad
当
V
˙
≤
0
\dot{V}\leq 0
V˙≤0,而且对于
V
˙
(
x
)
=
0
\dot{V}(x)=0
V˙(x)=0,除原点没有任何系统轨线能永远保留在集合
{
x
∣
V
˙
(
x
)
=
0
}
\{x|\dot{V}(x)=0\}
{x∣V˙(x)=0}中,则
x
=
0
x=0
x=0是渐近稳定的。利用拉萨尔定理考察原点的渐进稳定性,要指出
E
E
E中的最大不变集是原点。假设
V
(
x
)
V(x)
V(x)是正定的,可以得到
B
a
r
b
a
s
h
i
n
−
K
r
a
s
o
v
s
k
i
i
Barbashin-Krasovskii
Barbashin−Krasovskii定理。
\qquad
B
a
r
b
a
s
h
i
n
−
K
r
a
s
o
v
s
k
i
i
Barbashin-Krasovskii
Barbashin−Krasovskii定理 设
x
=
0
x=0
x=0为
x
˙
=
f
(
x
)
\dot{x}=f(x)
x˙=f(x)的平衡点,
V
:
Ω
→
R
V:\Omega\to\boldsymbol{R}
V:Ω→R是连续的正定函数,其中,
Ω
\Omega
Ω为原点的邻域,在
Ω
\Omega
Ω中,
V
˙
≤
0
\dot{V}\leq 0
V˙≤0,令
M
=
{
x
∈
Ω
∣
V
˙
(
x
)
=
0
}
M=\{x\in\Omega|\dot{V}(x)=0\}
M={x∈Ω∣V˙(x)=0},假设
M
M
M中不包含非零解,则原点是渐进稳定的。如果
V
(
x
)
V(x)
V(x)还具有径向无界的性质,则
x
=
0
x=0
x=0是全局渐进稳定的。
运动稳定性的基本概念
最新推荐文章于 2024-04-04 14:33:07 发布