运动稳定性的基本概念

\qquad 稳定性的研究对象是系统的运动,是系统运动受到扰动后的一种重要性质。系统的运动可以通过一组向量的变化来完全充分的表现出来,这组向量成为系统的状态向量,记为 x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn,状态变量的向量形式 x = [ x 1 , x 2 , ⋯   , x n ] T x=[x_{1},x_{2},\cdots,x_{n}]^{T} x=[x1,x2,,xn]T状态向量
\qquad 系统的运动方程常表示为一阶微分方程组形式:
x ˙ i = f i ( t , x 1 , ⋯   , x n ) , i = 1 , ⋯   , n \dot{x}_{i}=f_{i}(t,x_{1},\cdots,x_{n}),\quad i=1,\cdots,n x˙i=fi(t,x1,,xn),i=1,,n其中, x 1 , x 2 , ⋯   , x n x_{1},x_{2},\cdots,x_{n} x1,x2,,xn t t t未知函数 f 1 , ⋯   , f n f_{1},\cdots,f_{n} f1,,fn t , x 1 , x 2 , ⋯   , x n t,x_{1},x_{2},\cdots,x_{n} t,x1,x2,,xn已知函数。化简为向量形式,即
x ˙ = f ( t , x ) ( 1 ) \dot{x}=f(t,x)\qquad (1) x˙=f(t,x)(1)其中 t ∈ R , x = ( x 1 , ⋯   , x n ) T ∈ R n t\in \boldsymbol{R},x=(x_{1},\cdots,x_{n})^{T}\in \boldsymbol{R}^{n} tR,x=(x1,,xn)TRn(n维实欧式空间), f = ( f 1 , ⋯   , f n ) ∈ R n f=(f_{1},\cdots,f_{n})\in \boldsymbol{R}^{n} f=(f1,,fn)Rn,即 f : Ω ⊆ R n + 1 → R n f: \Omega\subseteq \boldsymbol{R}^{n+1}\to \boldsymbol{R}^{n} f:ΩRn+1Rn
\qquad 假设 x = φ ( t ) x=\varphi(t) x=φ(t)是定义在时间开区间 I = ( a , b ) ⊂ R I=(a,b)\subset\boldsymbol{R} I=(a,b)R上的可微函数( I I I可以是有限区间或者无限区间),对于一切 t ∈ I t\in I tI,有 ( t , φ ( t ) ) ∈ Ω ⊆ R (t,\varphi(t))\in\Omega\subseteq\boldsymbol{R} (t,φ(t))ΩR,并满足:
φ ˙ ( t ) = f ( t , φ ( t ) ) \dot{\varphi}(t)=f(t,\varphi(t)) φ˙(t)=f(t,φ(t)) \qquad 成立,称 φ ( t ) \varphi(t) φ(t) I I I的一个解。解 x = φ ( t ) x=\varphi(t) x=φ(t) ( t , x ) (t,x) (t,x)-空间的几何图形的一条曲线称为式(1)的积分曲线或系统的轨线
\qquad 运动的稳定性通常指平衡状态是稳定的,刚体处于静止的平衡状态,受到小的扰动力的作用偏离了平衡位置,仍能回到原来的位置或原来位置的附近,反之为不稳定。考察微分方程组:
x ˙ = f ( t , x ) x ( t 0 ) = x 0 ( 2 ) \dot{x}=f(t,x)\\ x(t_{0})=x_{0} \qquad(2) x˙=f(t,x)x(t0)=x0(2)其中,时间 t t t属于开区间 I = ( t 1 , t 2 ) ( t 1 ≥ − ∞ ; t 2 ≤ + ∞ ) ; I =(t_{1},t_{2})(t_{1}\ge-\infty;t_{2}\leq+\infty); I=(t1,t2)(t1;t2+);状态向量 x ∈ Ω ⊂ R n ; f : I × Ω ∈ R n + 1 → R n ; f ( t , x ) x\in\Omega\subset\boldsymbol{R}^{n};f:I\times\Omega\in\boldsymbol{R}^{n+1}\to\boldsymbol{R}^{n};f(t,x) xΩRn;f:I×ΩRn+1Rn;f(t,x)是连续的向量函数。
微分方程解存在的唯一性 (利普西茨条件)若 ∀ x , y ∈ Ω , ∀ t ∈ I , ∃ \forall x,y\in\Omega,\forall t\in I,\exists x,yΩ,tI,常数 L > 0 L>0 L>0使得
∣ ∣ f ( t , x ) − f ( t , y ) ∣ ∣ ≤ L ∣ ∣ x − y ∣ ∣ ||f(t,x)-f(t,y)||\leq L||x-y|| f(t,x)f(t,y)Lxy \qquad 则称 f f f I × Ω I\times\Omega I×Ω上满足利普西茨条件(简称利氏条件)称 L L L f f f Ω \Omega Ω上的利氏常数。显然,如果 f i ( t , x ) f_{i}(t,x) fi(t,x)的所有偏导数都存在,且雅可比矩阵 ∂ f ∂ x \frac{\partial f}{\partial x} xf I × Ω I\times\Omega I×Ω上有界,即
∥ ∂ f ∂ x ∥ ≤ K \begin{Vmatrix} \frac{\partial f}{\partial x} \end{Vmatrix}\leq K xfK其中, K K K为某一正数,则满足利氏条件
\qquad 解的存在唯一性定理 f ( t , x ) = [ f 1 ( t , x ) , ⋯   , f n ( t , x ) ] T f(t,x)=[f_{1}(t,x),\cdots,f_{n}(t,x)]^{T} f(t,x)=[f1(t,x),,fn(t,x)]T I × Ω I\times\Omega I×Ω上连续,且满足利氏条件,则 ∀ ( t 0 , x 0 ) ∈ I × Ω \forall(t_{0},x_{0})\in I\times\Omega (t0,x0)I×Ω,存在常数 t ∗ > 0 t^{*}>0 t>0,使得区间 [ t 0 − t ∗ , t 0 + t ∗ ] [t_{0}-t^{*},t_{0}+t^{*}] [t0t,t0+t]内存在唯一解 x ( t , t 0 , x 0 ) x(t,t_{0},x_{0}) x(t,t0,x0)满足
d ( t , t 0 , x 0 ) d t = f ( t , x ( t , t 0 , x 0 ) ) x ( t 0 , t 0 , x 0 ) = x 0 \frac{d(t,t_{0},x_{0})}{dt}=f(t,x(t,t_{0},x_{0}))\\ x(t_{0},t_{0},x_{0})=x_{0} dtd(t,t0,x0)=f(t,x(t,t0,x0))x(t0,t0,x0)=x0解是唯一存在的
解对初值与参数的连续依赖性与可微性 假设解的存在唯一性定理成立,有如下结论:
\qquad (1) 若式(2)两个解 x ( 1 ) ( t ) = x ( t , t 0 , x 0 ( 1 ) ) , x ( 2 ) ( t ) = x ( t , t 0 , x 0 ( 2 ) ) x^{(1)}(t)=x(t,t_{0},x^{(1)}_{0}),x^{(2)}(t)=x(t,t_{0},x^{(2)}_{0}) x(1)(t)=x(t,t0,x0(1)),x(2)(t)=x(t,t0,x0(2)) [ t 0 , t 1 ] [t_{0},t_{1}] [t0,t1]上均有定义,均位于 Ω \Omega Ω内,则 ∀ ϵ &gt; 0 , ∃ δ &gt; 0 \forall\epsilon&gt;0,\exists\delta&gt;0 ϵ>0,δ>0,当 ∣ ∣ x 0 ( 1 ) − x 0 ( 2 ) ∣ ∣ &lt; δ ||x_{0}^{(1)}-x_{0}^{(2)}||&lt;\delta x0(1)x0(2)<δ [ t 0 , t 1 ] [t_{0},t_{1}] [t0,t1]内有 ∣ ∣ x ( 1 ) ( t ) − x ( 2 ) ( t ) ∣ ∣ &lt; ϵ ||x^{(1)}(t)-x^{(2)}(t)||&lt;\epsilon x(1)(t)x(2)(t)<ϵ成立。
\qquad (2) 若 ∂ f i ∂ x j ( i , j = 1 , 2 , ⋯ &ThinSpace; , n ) \frac{\partial f_{i}}{\partial x_{j}}(i,j=1,2,\cdots,n) xjfi(i,j=1,2,,n)连续,则 ∂ x i ( t , t 0 , x 0 ) ∂ x j 0 ( i , j = 1 , 2 , ⋯ &ThinSpace; , n ) \frac{\partial x_{i}(t,t_{0},x_{0})}{\partial x_{j0}}(i,j=1,2,\cdots,n) xj0xi(t,t0,x0)(i,j=1,2,,n)也连续。
李雅普诺夫稳定性的定义
\qquad 一个系统的轨迹有可能只是一个单一的点。如果系统的初始值取在这个点上,系统状态将保持在这个点上,则称该点为平衡点。如果系统初值选取为某个状态 x e x_{e} xe,系统轨线 x ( t ) x(t) x(t)将在未来时间内一直保持在 x e x_{e} xe,则称为系统的一个平衡状态(或平衡点)。
\qquad 李雅普诺夫稳定性 设原点为系统的平衡点则称系统的零平衡点是李雅普诺夫稳定的。如果对于任意的 ϵ &gt; 0 \epsilon&gt;0 ϵ>0,都存在 δ ( ϵ , t 0 ) &gt; 0 \delta(\epsilon,t_{0})&gt;0 δ(ϵ,t0)>0,使得只要初始值 x 0 x_{0} x0选取在球域 ∣ ∣ x 0 ∣ ∣ ≤ δ ( ϵ , t 0 ) ||x_{0}||\leq\delta(\epsilon,t_{0}) x0δ(ϵ,t0)内,已 x 0 x_{0} x0为初值的解对于整个时间域 t 0 &lt; t &lt; ∞ t_{0}&lt;t&lt;\infty t0<t<都在以原点为球心以 ϵ \epsilon ϵ为半径的球域内(不稳定即在球域外),即
∣ ∣ x ( t , t 0 , x 0 ) ∣ ∣ ≤ ϵ , t ≥ t 0 ||x(t,t_{0},x_{0})||\leq\epsilon,\qquad t\ge t_{0} x(t,t0,x0)ϵ,tt0 \qquad 吸引性 如果存在 δ ( t 0 ) &gt; 0 \delta(t_{0})&gt;0 δ(t0)>0,当 ∣ ∣ x 0 ∣ ∣ ≤ δ ( t 0 ) ||x_{0}||\leq\delta(t_{0}) x0δ(t0)时,有 l i m t → ∞ x ( t , t 0 , x 0 ) = 0 \mathop{lim}\limits_{t\to\infty}x(t,t_{0},x_{0})=0 tlimx(t,t0,x0)=0 \qquad 则称系统 x ˙ = f ( t , x ) \dot{x}=f(t,x) x˙=f(t,x)的零平衡点是吸引的。即当初始状态选定在以零点为球心的某一个球域内时,系统的运动终将趋近于零点。描述系统运动趋近平衡点的程度与什么相关(趋近平衡点的速度受什么影响)。 ∃ δ ( t 0 ) &gt; 0 \exists\delta(t_{0})&gt;0 δ(t0)>0,当 ∣ ∣ x 0 ∣ ∣ ≥ δ ( t 0 ) ||x_{0}||\ge\delta(t_{0}) x0δ(t0)时, ∀ ϵ &gt; 0 , ∃ T ( ϵ , t 0 , x 0 ) \forall\epsilon&gt;0,\exists T(\epsilon,t_{0},x_{0}) ϵ>0,T(ϵ,t0,x0),对于 ∀ t ≥ t 0 + T ( ϵ , t 0 , x 0 ) \forall t\ge t_{0}+T(\epsilon,t_{0},x_{0}) tt0+T(ϵ,t0,x0),有 ∣ ∣ x ( t , t 0 , x 0 ) ∣ ∣ &lt; ϵ ||x(t,t_{0},x_{0})||&lt;\epsilon x(t,t0,x0)<ϵ
\qquad 一致吸引 若吸引型定义中 T T T仅依赖 ϵ \epsilon ϵ,而不依赖 t 0 , x 0 t_{0},x_{0} t0,x0,则称原点是一致吸引的,即 x ( t ) x(t) x(t)趋向于零平衡点的速度仅与 ϵ \epsilon ϵ有关,而与 t 0 , x 0 t_{0},x_{0} t0,x0无关,即 ∀ ϵ &gt; 0 , ∃ T ( ϵ ) \forall\epsilon&gt;0,\exists T(\epsilon) ϵ>0,T(ϵ),对于 ∀ t ≥ t 0 + T ( ϵ ) \forall t\ge t_{0}+T(\epsilon) tt0+T(ϵ),有 ∣ ∣ x ( t , t 0 , x 0 ) ∣ ∣ &lt; ϵ ||x(t,t_{0},x_{0})||&lt;\epsilon x(t,t0,x0)<ϵ。若 δ ( t 0 ) \delta(t_{0}) δ(t0)可任意大,则吸引和一致吸引分别为全局吸引和全局一致吸引
\qquad 渐近稳定和全局渐近稳定 如果:(1)零平衡点为稳定的(2)零平衡点分别为吸引、全局吸引,则分别称系统的解对零平衡点为渐近稳定和全局渐近稳定。一致渐近稳定如果(1)零平衡点为一致稳定(2)零平衡点是一致吸引,则称系统的解对于零平衡点为一致渐近稳定。全局一致渐近稳定如果(1)零平衡点为一致渐近稳定点。(2)零平衡点是全局一致吸引的。(3)方程所有的解是一致有界的,即 ∀ r &gt; 0 , ∃ B ( r ) &gt; 0 \forall r&gt;0,\exists B(r)&gt;0 r>0,B(r)>0,当 ∣ ∣ x ( t 0 ) ∣ ∣ ≤ r ||x(t_{0})||\leq r x(t0)r时,则对于所有的 t ≥ t 0 t\ge t_{0} tt0,有 ∣ ∣ x ( t , t 0 , x 0 ) ∣ ∣ ≤ B ( r ) ||x(t,t_{0},x_{0})||\leq B(r) x(t,t0,x0)B(r)
\qquad 拉塞尔不变定理 Ω \Omega Ω为紧集,从 Ω \Omega Ω出发的方程 x ˙ = f ( x ) \dot{x}=f(x) x˙=f(x)的解对于 t &gt; 0 t&gt;0 t>0均停留在 Ω \Omega Ω内,如果存在函数 V : Ω → R V:\Omega\to\boldsymbol{R} V:ΩR是连续可微的,在 Ω \Omega Ω V ˙ ≤ 0 \dot{V}\leq 0 V˙0,又设 E = { x ∣ V ˙ ( x ) = 0 , x ∈ Ω } , M ⊂ E E=\{x|\dot{V}(x)=0,x\in\Omega\},M\subset E E={xV˙(x)=0,xΩ},ME E E E最大不变集,则对于 ∀ x 0 ∈ Ω \forall x_{0}\in\Omega x0Ω,当 t → ∞ t\to\infty t时,有 x ( t , x 0 ) → M x(t,x_{0})\to M x(t,x0)M
\qquad V ˙ ≤ 0 \dot{V}\leq 0 V˙0,而且对于 V ˙ ( x ) = 0 \dot{V}(x)=0 V˙(x)=0除原点没有任何系统轨线能永远保留在集合 { x ∣ V ˙ ( x ) = 0 } \{x|\dot{V}(x)=0\} {xV˙(x)=0}中,则 x = 0 x=0 x=0是渐近稳定的。利用拉萨尔定理考察原点的渐进稳定性,要指出 E E E中的最大不变集是原点。假设 V ( x ) V(x) V(x)是正定的,可以得到 B a r b a s h i n − K r a s o v s k i i Barbashin-Krasovskii BarbashinKrasovskii定理。
\qquad B a r b a s h i n − K r a s o v s k i i Barbashin-Krasovskii BarbashinKrasovskii定理 x = 0 x=0 x=0 x ˙ = f ( x ) \dot{x}=f(x) x˙=f(x)的平衡点, V : Ω → R V:\Omega\to\boldsymbol{R} V:ΩR是连续的正定函数,其中, Ω \Omega Ω为原点的邻域,在 Ω \Omega Ω中, V ˙ ≤ 0 \dot{V}\leq 0 V˙0,令 M = { x ∈ Ω ∣ V ˙ ( x ) = 0 } M=\{x\in\Omega|\dot{V}(x)=0\} M={xΩV˙(x)=0},假设 M M M不包含非零解,则原点是渐进稳定的。如果 V ( x ) V(x) V(x)还具有径向无界的性质,则 x = 0 x=0 x=0是全局渐进稳定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值