视觉SLAM14讲 第四章 相机模型 非线性优化

目录

 

往期内容回顾

1.针孔相机模型与图像

1.1 内参

1.2 外参

1.3 畸变

1.4 双目相机

1.5 RGB-D相机

2.批量状态估计问题

3.非线性最小二乘法


往期内容回顾

1.SLAM的运动和观测模型

①在输入uk下,由xk到xk+1     xk通过相机的旋转和平移来描述  即(R,t)或者T

②在xk下,观察路标yj,得到观测数据zkj

2.观测模型的具体形式

h(x_{k},y_{j})=z_{k,j}→相机成像

3.状态估计问题

由观测数据z_{k,j}、传感器输入数据u_{k}→估计位姿x_{k},路标点y_{j}

批量的状态估计可以通过构建非线性最小二乘模型解决

 

1.针孔相机模型与图像

成像由3D到2D,丢失了像素点的深度信息,即每个像素的距离。

1.1 内参

实际中的三维点投影,在数学上进行相似对称得到图像坐标系中的坐标X',Y'。

图像坐标系经过伸缩、平移得到像素坐标系中的坐标u,v

一般情况下像素坐标系的原点位于图像中心。则对于分辨率640x480,c_{x},x_{y}为(320,240)。

缩放为了保证看起来差不多,一般情况下f_{x}\approx f_{y}

假设上式左乘一个倍数,那么对应于真实的三维点P,肯定是远了一些。但是,像素坐标仍然是[u,v,1],由此,证明,在投影的过程中丢失了深度信息。

同一直线上的投影点仍是同一个。

上式首先对三维点[X,Y,Z]^{T}除以z,实际上是求了在距离光心z=1处的平面上的投影点坐标,z=1为归一化平面.

1.2 外参

相机坐标系与世界坐标系之间相差的变化,由世界坐标到相机坐标系即T_{cw}

非齐次到齐次的转换过程:

外参是SLAM估计的目标

投影顺序:世界→相机→归一化平面→像素坐标系

即:观测方程被描述为:

1.3 畸变

径向畸变和切向畸变

径向畸变很形象。

切向畸变可以理解为正方向→平行四边形

利用多项式,描述畸变。

畸变系数的确定,可以通过实践进行,先试试小阶的够不够用,一般不推荐高阶,如果高阶解决不了,可能是模型不太好。

例如鱼眼模型,可以利用鱼眼的模型解决。

如果有畸变的话,就在3,4之间添加畸变模型。

1.4 双目相机

由坐标系可以看出,为什么是一正一负的投影关系。z表示为距离。

由上式可得:当点离我们越远,即z越大,视差d应该越小,最小为一个像素。同理,当点离我们越近,即z越小,视差d越大。

1.5 RGB-D相机

物理手段测量深度。

opencv中默认BGR

RGB-D用深度图

2.批量状态估计问题

批量、递归 

批量:一段时间内,一起推断

递归:有k时刻,迭代,推出k+1时刻

实际两种都采用。

疑问:这里的误差里的参数是什么意思,是估计的还是什么。xk是估计的,带入上一时刻的不完全符合,但是xk-1也是估计的。

 

3.非线性最小二乘法

使增量越来越小,表示无限接近。但是,增量应该往哪个方向走?

最速下降法会碰到zigzag问题,过于贪婪,即每次都是梯度方向,相当于走了一个之字形。

牛顿法迭代次数少,但需要计算复杂的hessian矩阵,在局部算一个二阶系数矩阵会比较麻烦。实际中,使用的是改进的方法,回避海森矩阵的计算。一种是高斯牛顿,一种是列文伯格。

3.1 高斯牛顿

高斯牛顿,不是近似||f(x)||^{2},而是一阶近似f(x).

重点在于利用:J^{T}J\approx H,回避了H矩阵的计算。

J^{T}J\approx H是半正定矩阵,不一定是正定矩阵

3.2 列文伯格

在高斯牛顿上进一步改善。

用一个参数控制近似的范围,改善近似效果。

 

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值