机器学习的数学基础(3):正交性原理(orthogonality principle)

本文讨论了在希尔伯特空间中如何找到一个点到给定子空间的最近距离。利用正交性定理,证明了解的存在性和唯一性。在证明过程中,分为两部分:首先证明满足正交条件的点是优化问题的解,然后给出解的具体表达式,通过线性代数的方法求解,并证明了解的唯一性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思考这样一个问题,令S为一个希尔伯特空间,而\tau空间S的一个子空间

当我们给定了x\in S,如何求最近\tau上距离x最近的点。

则我们用数学语言表示该问题为一个优化问题:

\min \left \| x-y \right \|\quad y\in \tau

该问题的解可以直接通过一个定理给出,即正交性定理(orthogonality principle)

Orthogonality Principle

定理描述如下:

令S为一个希尔伯特空间,而\tau空间S的一个子空间,当我们给定任意的x\in S

1. 一定存在一个唯一的点\hat{x}\in \tau遵循:x-\hat{x}\perp \tau

2. 满足1的这个点\hat{x}是该优化问题的唯一解

接下来我们将分两部分证明上述定理,第一部分先证明满足1的解一定是问题的解,第二部分则会给出解的具体表达式以及唯一性的证明

Part I

由定理第一条我们有:\left \langle x-\hat{x},y \right \rangle=0 对于任何\tau中元素都成立

\left \| x-y \right \|^{2}=\left \| (x-\hat{x}-(y-\hat{x})) \right \|^2=\left \| x-\hat{x} \right \|^2+\left \| y-\hat{x} \right \|^2

(其中第二个等式是因为y-\hat{x}也在空间\tau中,所以内积为0

所以显然:\left \| x-y \right \|^{2}\geq \left \| x-\hat{x} \right \|^2,当y=\hat{x}时等号成立,因此这也就证明了满足定理第一条的解一定时优化问题的解。

Part II

这一部分我们将给出解的计算方法,并通过解析表达式来去说明解是唯一的

现在假设\tau的一组基底为v_1,v_2,...v_N,那么解则可以表示为:

\hat{x}=a_1v_1+a_2v_2+...+a_Nv_N

则有:

\left \langle x-\sum_{k=1}^{N}a_kv_k ,v_n\right \rangle=0\rightarrow \left \langle x,v_n \right \rangle=\sum_{k=1}^{N}a_k\left \langle v_k,v_n \right \rangle

求解ak,我们则可以通过线性代数的知识进行直接求解,首先我们把上述等式表示为矩阵的形式:

 左边的矩阵叫做基底vn的Gram矩阵,记作G,我们将右边的矩阵记为b

因为所有基底全部是线性无关的,所以G可逆,进而我们可以直接写出a的表达式:

a=G^{-1}b

并且由于G是可逆的,自然a只存在唯一解

以上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值