思考这样一个问题,令S为一个希尔伯特空间,而空间S的一个子空间
当我们给定了,如何求最近
上距离x最近的点。
则我们用数学语言表示该问题为一个优化问题:
该问题的解可以直接通过一个定理给出,即正交性定理(orthogonality principle)
Orthogonality Principle
定理描述如下:
令S为一个希尔伯特空间,而空间S的一个子空间,当我们给定任意的
,
1. 一定存在一个唯一的点遵循:
2. 满足1的这个点是该优化问题的唯一解
接下来我们将分两部分证明上述定理,第一部分先证明满足1的解一定是问题的解,第二部分则会给出解的具体表达式以及唯一性的证明
Part I
由定理第一条我们有: 对于任何
中元素都成立
(其中第二个等式是因为也在空间
中,所以内积为0
所以显然:,当
时等号成立,因此这也就证明了满足定理第一条的解一定时优化问题的解。
Part II
这一部分我们将给出解的计算方法,并通过解析表达式来去说明解是唯一的
现在假设的一组基底为
,那么解则可以表示为:
则有:
求解ak,我们则可以通过线性代数的知识进行直接求解,首先我们把上述等式表示为矩阵的形式:
左边的矩阵叫做基底vn的Gram矩阵,记作G,我们将右边的矩阵记为b
因为所有基底全部是线性无关的,所以G可逆,进而我们可以直接写出a的表达式:
并且由于G是可逆的,自然a只存在唯一解
以上