【原创分享】PMU电源PCB设计要点

PMU(Power Management Unit)电源管理单元是一种集成在计算机、手机等电子设备中的芯片,用于管理设备的电源供应和功耗控制。


PMU主要具有以下功能:

1. 供电管理:PMU负责向设备的各个部分提供适当的电源电压和电流。

2. 电源切换:当设备从电池供电切换到外部电源供电(如插入电源适配器)或者从外部电源切换到电池供电时,PMU可以自动进行电源切换。

3. 电池管理:PMU可以监测电池的电量,并向用户提供电池电量的实时信息。同时,PMU还可以对电池进行充电和保护,如过充保护和过放保护。

4. 电源优化:PMU可以根据设备的工作状态和用户设置,对设备的功耗进行智能调整,从而延长电池寿命或提升设备性能。

5. 硬件保护:PMU可以监测设备的温度、电流和电压等参数,并在异常情况下采取相应的保护措施,以确保设备的稳定运行和安全性。

总之,PMU作为设备的电源管理核心,可以有效控制设备的电源供应和功耗,提高设备的性能和续航时间,同时保护设备和用户的安全。


PMU的组成:

1.DCDC电源电源模块

2.LDO低压差线性稳压模块

3.控制电路等等


750ed03e822f97ced09c8598c159b700.jpeg

b5a73bfb28c8b2297f1323cb8b6b180f.jpeg

3cd284a38b2d014cfa93a48cd2186337.jpeg

beb98ac0f08207823c0eba9014154511.jpeg


在PMU电源布局需要注意的事项有:

1.先处理DCDC部分,电感与焊盘管脚连接处的线越短越好。

2.相邻电感需要垂直摆放

3.然后把DCDC对应的其他电路摆进去

4.注意电感需要和芯片保持间距,还有其他信号需要连出去


ee91ab14676866648ada459548208758.jpeg

b63e376bc83b676add5877c89336c6b8.jpeg


5.DCDC处理好之后处理LDO电源模块,小电容可以放置在背面,注意离扇热焊盘保持间距,因为最后扇热焊盘需要打孔

6.电感底下不要放置任何元器件

7.器件与芯片保持间距,留出扇孔空间

8.最后把其余控制部分的器件摆进去里面,在整体做一个优化调整


b906b1f64a68f62aee4590c40666a8e6.jpeg


在PMU电源布线需要注意的事项有:

1.先对DCDC电源部分进行扇孔,电源输出要短且粗,需要满足电源载流要求

2.由于电源需要给其它电路模块供电,所以在输出的最后一个滤波电容后方进行打孔,GND部分也是如此,通常电源打多少个孔,GND也是需要打这么多孔


b51bca664e8b4f0d6bc97354153fbc69.jpeg


3.接下来可以从左上角管脚开始,从左到右(PMU需要按照PCB管脚位置一步步处理,并不是按照原理图顺序)从上到下做一个顺时针或者逆时针的扇孔即可

4.注意反馈元器件需要靠近芯片管脚进行摆放,反馈线不要经过大电流功率平面

5.电源输入需要算电流大小,然后打上相应数量的过孔


03fc21bd6d852dff6fc61a63f0c1f7af.jpeg


6整体扇出之后需要对散热焊盘打上GND过孔辅助散热。

7.所有带有网络的焊盘都需要进行扇出

8.对整体进行检测,检测是否满足载流要求以及设计是否合理


bda1f2fd41a6d13d80917fa1fd28c5b5.jpeg

3016e821a04bdb1ca28f32893a2acb63.jpeg


声明:本文凡亿教育原创文章,转载请注明来源!

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值