python 多项式求解 用numpy.poly1d()函数求阶多项式 , 5?3+2?2+3?+1=0
但是 poly1d()函数的主要用法就是 为 polyfit() 函数服务
polyfit( x_matrix , y_matrix , n ) 是matlab和numpy通用函数,.是最小二乘法原理
x_matrix 是源离散点的横坐标组成的矩阵
y_matrix 是源离散点对应的纵坐标组成的矩阵
n 要拟合出来的多项式的最高阶,
比如:
多项式的最高阶为1,那它肯定是直线 一阶直线拟合
多项式的最高阶为2,那它肯定是抛物线 二阶抛物线拟合
注意:并不是阶数越高,拟合度越好,具体看情况而定
该函数返回的是一个array由 多项式(拟合结果) 的系数组成
所以要真正得到这个多项式必须用numpy.poly1d()函数,我们把系数传给它就ok
曲线拟合
现实生活当中,很多东西是没有一定的关系或者关系不明显,这类似于无数个离散点
机器也之所以模仿不了很多东西。而如今可以用曲线拟合的方法近似地概括出这些离
散点的轨迹,从而找出它们的关系。拟合成都越高,真实性股越强。从此为了提高曲
线拟合准确性,引来了最小二乘法;为了提高曲线拟合计算速度,引来了梯度下降法
等等。也从此引来了机器学习热风。