python 多项式求解 用numpy.poly1d()函数求阶多项式 ,, 53+22+3+1=0 polyfit()函数用法 ,曲线拟合,机器学习,matlab

本文介绍如何利用numpy库中的polyfit()和poly1d()函数进行数据拟合,详细解释了polyfit()函数的工作原理及其参数设置,并通过实例说明了如何应用这些函数来寻找离散数据点的最佳多项式拟合。
摘要由CSDN通过智能技术生成

python 多项式求解 用numpy.poly1d()函数求阶多项式 , 5?3+2?2+3?+1=0

在这里插入图片描述

但是 poly1d()函数的主要用法就是 为 polyfit() 函数服务
		polyfit( x_matrix , y_matrix , n )    是matlab和numpy通用函数,.是最小二乘法原理
		 
		 x_matrix    是源离散点的横坐标组成的矩阵
		 y_matrix    是源离散点对应的纵坐标组成的矩阵
		 n   要拟合出来的多项式的最高阶,
		 
		 比如: 
		 			多项式的最高阶为1,那它肯定是直线                      一阶直线拟合
		 			多项式的最高阶为2,那它肯定是抛物线					 二阶抛物线拟合
					
					注意:并不是阶数越高,拟合度越好,具体看情况而定

该函数返回的是一个array由   多项式(拟合结果) 的系数组成
所以要真正得到这个多项式必须用numpy.poly1d()函数,我们把系数传给它就ok

在这里插入图片描述

曲线拟合

	现实生活当中,很多东西是没有一定的关系或者关系不明显,这类似于无数个离散点
	机器也之所以模仿不了很多东西。而如今可以用曲线拟合的方法近似地概括出这些离
	散点的轨迹,从而找出它们的关系。拟合成都越高,真实性股越强。从此为了提高曲
	线拟合准确性,引来了最小二乘法;为了提高曲线拟合计算速度,引来了梯度下降法
	等等。也从此引来了机器学习热风。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@Sadam

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值