数值代数中的数学原理及其证明(一)

前言

在这里整理一些数值代数中重要定理以及数学证明。本章主要介绍向量范数与矩阵范数。


目录

前言

向量范数

向量范数定义:

常用向量范数:

常用不等式(用于证明范数):

范数性质:

矩阵范数:

矩阵范数定义:

相容定义:

常用矩阵范数:

矩阵范数性质:

常用范数及其定理:

谱范数的常用性质:

谱半径定义:

谱半径与矩阵范数之间关系:

几个重要定理:


向量范数

向量范数定义:

一个从R^nR的非负函数||\cdot ||叫做R^n上的向量范数,如果它满足:

(1)正定性:\forall x \in R^n,||x||\geq 0;||x||=0\Leftrightarrow x=0

(2)齐次性:\forall x\in R^n, \alpha\in R,||\alpha x|| = |\alpha| ||x||

(3)三角不等式:\forall x, y\in R^n, ||x+y||\leq ||x||+||y||

常用向量范数:

p范数:||x||_p = (|x_1|^p + |x_2|^p +\cdots +|x_n|^p)^{\frac{1}{p}}, p\geq 1

其中p=1,2,\infty最常用。

常用不等式(用于证明范数):

  • Cauchy-Schwartz不等式:|x^Ty| \leq ||x||_2||y||_2, x,y \in R^n
  • Holder不等式:|x^Ty|\leq ||x||_p||y||_q, \frac{1}{p} + \frac{1}{q} = 1

范数性质:

1、

| ||x||-||y|| |\leq ||x-y||\leq \max_{1\leq i\leq n} ||e_i||\sum_{i=1}^n|x_i-y_i|

2、任意两范数||\cdot ||_{\alpha}, ||\cdot||_{\beta},存在常数c_1, c_2,有

\forall x\in R^n, c_1||x||_{\alpha} \leq ||x||_{\beta}\leq c_2 ||x||_{\alpha}

3、向量序列的范数收敛等价于其分量收敛,也即对x_k\in R^n,有

\lim_{k\to \infty}|x_i^{(k)} - x_i| = 0\Leftrightarrow \lim_{k\to \infty}|x_i^{(k)}-x_i| = 0,i=1,\cdots,n


矩阵范数:

矩阵范数定义:

一个从R^{n\times n}到R的非负函数||\cdot ||叫做R^{n\times n}上的矩阵范数,如果满足:

(1)正定性:对所有A\in R^{n\times n},有||A||\geq 0, ||A||=0 \Leftrightarrow A=0

(2)齐次性:\forall A\in R^{n\times n}, \alpha \in R, ||\alpha A|| = |\alpha|||A||

(3)三角不等式:\forall A, B \in R^{n\times n},||A+B|| \leq ||A|| + ||B||

(4)相容性:\forall A, B \in R^{n\times n},||AB|| \leq ||A|| ||B||

相容定义:

若矩阵范数||\cdot ||_M和向量范数||\cdot ||_v满足

||Ax||_v\leq ||A||_M ||x||_v, A\in R^{n\times n}, x\in R^n

则称矩阵范数与向量范数是相容的。

常用矩阵范数:

||\cdot ||R^n上的一个向量范数,若定义

|||A||| = \max_{||x||=1}||Ax||, A\in R^{n\times n}

则上述是R^{n\times n}上的一个矩阵范数。该范数也称为从属于向量范数||\cdot ||的矩阵范数,也称为向量范数||\cdot ||诱导出的算子范数。该范数与向量范数||\cdot ||相容。

矩阵范数性质:

1、R^{n\times n}上的任意两个矩阵范数是等价的

2、矩阵序列的范数收敛等价于其元素收敛

常用范数及其定理:

算子范数||\cdot ||_p:

||A||_p = \max_{||x||_p =1} ||Ax||_p, A\in R^{n\times n}

 且有:

\\ ||A||_1 = \max_{1\leq j\leq n} \sum_{i=1}^n |a_{ij}|,\\ ||A||_{\infty} = \max_{1\leq i\leq n} \sum_{j=1}^n |a_{ij}|,\\ ||A||_2 = \sqrt{\lambda_{\max}(A^TA)}

对于1,2,\small \infty范数,我们也称之为列和范数行和范数谱范数。 

除此之外,我们还有Frobenius范数:

||A||_F = (\sum_{i,j=1}^n|a_{ij}|^2)^{\frac{1}{2}}

对于||A||_1为范数的简单证明:

对任意满足\small |x|_1 =\sum_{i=1}^n |x_i| = 1的x,有

\small ||Ax||_1 = ||\sum_{j=1}^n x_j a_j ||_1 \leq \sum_{j=1}^n |x_j| ||a_j||_1 \leq (\sum_{j=1}^n |x_j| )\max_{1\leq j\leq n} ||a_j||_1 = ||a_{j_0}||_1 = \delta

 同时,取n阶单位矩阵第\small j_0\small e_{j_0},则有\small ||e_{j_0}||=1,且

\small ||A e_{j_0}||_1 = ||a_{j_0}||_1 = \delta

因此,等号可取到,原式成立。

对于\small ||A||_{\infty}为范数的简单证明:

对任意满足\small ||x||_{\infty}=1的x,有

\small ||Ax||_{\infty} = \max_{1\leq i \leq n}|\sum_{j=1}^n a_{ij}x_j|\leq \max_{1\leq i\leq n} \sum_{j=1}^n |a_{ij}| |x_j| \leq \max_{1\leq i \leq n}\sum_{j=1}^n|a_{ij}|=\eta

设A的第k行的1范数最大,令\small \hat{x} = (sgn (a_{k1}), \cdots ,sgn(a_{kn}))^T,易证\small ||A\hat{x}||_{\infty} = \eta,因此,等号可取到,原式成立。

 对于2范数的简单证明:

\small ||A||_2 =\max_{||x||_2 = 1}||Ax||_2 = \max_{||x||_2 = 1}[(Ax)^T Ax]^{\frac{1}{2}} = \max_{||x||_2 = 1}[x^T(A^TA)x]^{\frac{1}{2}}

\small A^TA为半正定矩阵,其特征值为\small \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0,其对应正交规范特征向量为\small v_1, v_2, \cdots , v_n \in R^n,则对任意满足\small ||x||_2 = 1的向量,有

\small x = \sum_{i=1}^n \alpha_i v_i , \sum_{i=1}^n \alpha_i^2 =1

因此,有

\small x^TA^TAx = \sum_{i=1}^n \lambda_i \alpha_i^2 \leq \lambda_1

另一方面,若取\small x = v_1,则有

\small x^TA^TAx = v_1^TA^TAv_1 = v_1^T\lambda_1 v_1 = \lambda_1

所以有

\small ||A||_2 = \max_{||x||_2=1}||Ax||_2 = \sqrt{\lambda_1} = \sqrt{\lambda_{\max}(A^TA)}

谱范数的常用性质:

(1)\small ||A||_2 = \max \{|y^T A x|:x,y\in C^n, ||x||_2 = ||y||_2 = 1\}

(2)\small ||A^T||_2 = ||A||_2 = \sqrt{||A^T A||_2}

(3)对任意n阶正交矩阵U和V,有\small ||UA||_2 = ||AV||_2 = ||A||_2 

谱半径定义:

A\in C^{n\times n},则称 \rho(A) = \max\{|\lambda|:\lambda\in \lambda(A)\}为A的谱半径。

谱半径与矩阵范数之间关系:

 设A \in C^{n\times n},则有

(1)对C^{n\times n}上的任意矩阵范数||\cdot ||,有\rho (A) \leq ||A||

(2)对任给的\varepsilon >0,存在C^{n\times n}上的算子范数||\cdot ||,使得||A||\leq \rho(A) +\varepsilon

对性质1的简单证明:

设x满足x\neq 0,Ax =\lambda x , |\lambda| = \rho (A),则有

\rho (A) ||xe_1^T|| = |\lambda|||xe_1^T||= ||\lambda x e_1^T|| = ||Ax e_1^T||\leq ||A|| ||xe_1^T||

从而\rho(A) \leq ||A|| 。

几个重要定理:

定理1:A\in C^{n\times n},则

\lim_{k\to \infty} A^k = 0 \Leftrightarrow \rho(A) <1

定理2:A\in C^{n\times n},则

(1)\sum_{k=0}^{\infty} A^k收敛的充要条件是\rho(A) <1

(2)当\sum_{k=0}^{\infty} A^k收敛时, 有

\sum_{k=0}^{\infty} A^k = (I-A)^{-1}

 

而且存在C^{n\times n}上的算子范数||\cdot ||,使得

||(I-A)^{-1}- \sum_{k=0}^{\infty}A^k||\leq \frac{||A||^{m+1}}{1-||A||}

对一切的自然数m成立。

推论:||\cdot ||C^{n\times n}上的一个满足条件||I||=1的矩阵范数,并假定A\in C^{n\times n}满足||A||<1且I-A可逆,且有

||(I-A)^{-1}||\leq \frac{1}{1-||A||}

  • 6
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲸鲸爱柠檬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值