【炼丹技巧】指数移动平均(EMA)

1、指数移动平均(Exponential Moving Average)EMA概念和作用:

模型权重在最后的n步内,会在实际的最优点处抖动,所以我们取最后n步的平均,能使得模型更加的鲁棒。相比对权重变量直接赋值而言,移动平均得到的值在图像上更加平缓光滑,抖动性更小,不会因为某次的异常取值而使得滑动平均值波动很大。

作用是使得模型在测试数据上更加健壮,有更好的鲁棒性,在一定程度上提高最终模型在测试数据上的表现(例如accuracy、FID、泛化能力...)。

根据“https://github.com/zheng-yuwei/enhanced-UGATIT”上说的是:ema可以大幅提高模型稳定性和FID

在整个过程中,我们在训练的时候使用原始的权重,只有在test的时候才使用shadow weights。

2、EMA在深度学习上的计算方法:

v_{t-1}:前 t -1 次更新的所有参数平均数,也称为“ 影子权重(shadow weights)”。

\theta _t:t 时刻的模型权重weights。

\beta:是一个常数,我们认为它是一个调节取前多少次参数平均的“权重参数”,在代码中一般写为decay,一般设为0.9-0.999

Vt 和 β 的关系:

Andrew Ng在Course 2 Improving Deep Neural Networks中讲到,EMA可以近似看成过去 1/(1−β)​ 个时刻 V​ 值的平均。所以:

β = 0.91/(1−β) ​= 10Vt 表示取前10次权重的平均数据
β = 0.51/(1−β)​ = 2Vt 表示取前2次权重的平均数据
β = 0.9991/(1−β) ​= 1000Vt 表示取前1000次权重的平均数据

那么就是 β 越大,表示考虑2前 N-1 天/次的影响越大,而考虑当前第N天的影响越小。

3、代码实现

为什么update影子权重Vt的时候直接使用下面公式,按理说Vt-1不应该是前t-1次权重的平均值吗?

其实你看下下面的公式计算,就可以知道,我们只需要按照公式直接计算就可以了,每次的结果会叠加,所以就不需要求前t-1次权重的平均值,因为它是迭代进行的,而不是直接求出最后的。

class EMA():
    def __init__(self, model, decay):
        self.model = model
        self.decay = decay
        self.shadow = {}
        self.backup = {}

    # 得到 shadow weights,它是model weight的deepcocy值
    def register(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                self.shadow[name] = param.data.clone()

    # 更新 shadow weights
    def update(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name]
                self.shadow[name] = new_average.clone()

    # 使用 shadow weights
    def apply_shadow(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.shadow
                self.backup[name] = param.data
                param.data = self.shadow[name]

    # 应用原来的 weights 进行训练
    def restore(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                assert name in self.backup
                param.data = self.backup[name]
        self.backup = {}


# 初始化EMA
ema = EMA(model, 0.999)
ema.register()

# 训练过程中,更新完参数后,同步 update shadow weights
def train():
    # 使用shadow weights(第t-1次的model的参数) 和 优化器更新后的model参数(第t次model的参数),
    optimizer.step()
    # 更新
    ema.update()

# eval前,apply shadow weights;eval之后,恢复原来模型的参数
def evaluate():
    # eval前
    ema.apply_shadow()
    # eval之后
    ema.restore()

【炼丹技巧】指数移动平均(EMA)的原理及PyTorch实现 - 知乎

EMA(指数移动平均)及其深度学习应用_深度学习ema-CSDN博客

代码和深度理解:【炼丹技巧】指数移动平均(EMA)的原理及PyTorch实现 | 瓦特兰蒂斯

原文:深度学习中EMA的使用场景

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值