多头总框架
多头注意力融合了来自于多个注意力汇聚的不同知识,这些知识的不同来源于相同的查询、键和值的不同的子空间表示。
而多头self-attention模块,则是将Q,K,V通过参数矩阵映射后(即Q,K,V分别接一个全连接层),通过张量操作(X.reshape())将张量变换为可以实现多个头并行计算的样子,然后再做self-attention,将这个过程重复h(原论文中h=8)次,最后再将所有的结果拼接起来,再送入一个全连接层即可,图示如上:
代码解析:
1、经过参数矩阵映射(即Q,K,V分别接一个全连接层):
self.W_q = nn.Linear(query_size, num_hiddens, bias=bias) self.W_k = nn.Linear(key_size, num_hiddens, bias=bias) self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
2、通过张量操作将张量变换为可以实现多个头并行计算的样子(即下面的transpose_qkv函数) :
queries = transpose_qkv(self.W_q(queries), self.num_heads) keys = transpose_qkv(self.W_k(keys), self.num_heads) values = transpose_qkv(self.W_v(values), self.num_heads)
3、然后再做self-attention:
output = self.attention(queries, keys, values, valid_lens)
4、将这个过程重复h(原论文中h=8)次(即上述的valid_lens实现重复h次):
# valid_lens 的形状: (batch_size,)或(batch_size,查询的个数) if valid_lens is not None: # 在轴0,将第一项(标量或者矢量)复制num_heads次,然后如此复制第二项,然后诸如此类。 valid_lens = torch.repeat_interleave(valid_lens, repeats=self.num_heads, dim=0)
5、最后再将所有的结果拼接起来,再送入一个全连接层即可:
output_concat = transpose_output(output, self.num_heads) return self.W_o(output_concat)
其中W_o是:
self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)
总体代码如下:
import torch
from torch import nn
from d2l import torch as d2l
class MultiHeadAttention(nn.Module):
"""多头注意力"""
def __init__(self, key_size, query_size, value_size, num_hiddens, num_heads, dropout, bias=False, **kwargs):
super(MultiHeadAttention, self).__init__(**kwargs)
self.num_heads = num_heads
# 此处使用缩放点积注意力作为每一个注意力头
self.attention = d2l.DotProductAttention(dropout)
self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)
def forward(self, queries, keys, values, valid_lens):
# queries,keys,values的形状: (batch_size,查询或者“键-值”对的个数,num_hiddens)
# 经过变换后,输出的queries,keys,values 的形状: (batch_size * num_heads,查询或者“键-值”对的个数, num_hiddens/num_heads)
queries = transpose_qkv(self.W_q(queries), self.num_heads)
keys = transpose_qkv(self.W_k(keys), self.num_heads)
values = transpose_qkv(self.W_v(values), self.num_heads)
# valid_lens 的形状: (batch_size,)或(batch_size,查询的个数)
if valid_lens is not None:
# 在轴0,将第一项(标量或者矢量)复制num_heads次,然后如此复制第二项,然后诸如此类。
valid_lens = torch.repeat_interleave(valid_lens, repeats=self.num_heads, dim=0)
# output的形状:(batch_size*num_heads,查询的个数,num_hiddens/num_heads)
output = self.attention(queries, keys, values, valid_lens)
# output_concat的形状:(batch_size,查询的个数,num_hiddens)
output_concat = transpose_output(output, self.num_heads)
return self.W_o(output_concat)
上述代码31行有“ output = self.attention(queries, keys, values, valid_lens) ” ,其实这一步便是完成以下公式的操作,所谓多头,只是多个attention同时计算罢了
通过张量操作实现多个头并行计算
基于适当的张量操作,可以实现多头注意力的并行计算
为了能够使多个头并行计算, 上面的MultiHeadAttention
类将使用下面定义的两个转置函数(transpose_qkv与transpose_output
)。
具体来说,transpose_output
函数反转了transpose_qkv
函数的操作。
#######################################################################
#### 为了能够使多个头并行计算,上面的MultiHeadAttention类将使用下面定义的两个转置函数。
#### 具体来说,transpose_output函数反转了transpose_qkv函数的操作。
def transpose_qkv(X, num_heads):
"""为了多注意力头的并行计算而变换形状"""
# 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
# 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,num_hiddens/num_heads)
X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)
# 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数, num_hiddens/num_heads)
X = X.permute(0, 2, 1, 3)
# 最终输出的形状:(batch_size * num_heads,查询或者“键-值”对的个数, num_hiddens/num_heads)
return X.reshape(-1, X.shape[2], X.shape[3])
def transpose_output(X, num_heads):
"""逆转transpose_qkv函数的操作"""
X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
X = X.permute(0, 2, 1, 3)
return X.reshape(X.shape[0], X.shape[1], -1)
测试
下面我们使用键和值相同的小例子来测试我们编写的MultiHeadAttention
类。 多头注意力输出的形状是(batch_size
,num_queries
,num_hiddens
)。
#### 下面我们使用键和值相同的小例子来测试我们编写的MultiHeadAttention类。 多头注意力输出的形状是(batch_size,num_queries,num_hiddens)
num_hiddens, num_heads = 100, 5
# key_size, query_size, value_size,与num_hiddens相同
attention = MultiHeadAttention(num_hiddens, num_hiddens, num_hiddens, num_hiddens, num_heads, 0.5)
print(attention.eval())
batch_size, num_queries = 2, 4
num_kvpairs, valid_lens = 6, torch.tensor([3, 2])
X = torch.ones((batch_size, num_queries, num_hiddens)) # (2,4,100)
Y = torch.ones((batch_size, num_kvpairs, num_hiddens)) # (2,6,100)
print(attention(X, Y, Y, valid_lens).shape)