多目标优化两种算法:加权、智能优化算法

文章探讨了传统数学优化算法在处理多目标优化问题中的局限,如单目标权值确定困难和非凸性问题。对比了NSGA、NSGAII和MOEA/D等智能优化算法,它们通过Pareto关系、分解和指标方法来改进求解效率和结果多样性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统数学优化算法(加权)

 使用数学优化算法解决多目标优化问题通常是将各个子目标聚合成一个带权重的单目标函数,系数由决策者决定,或者由优化方法自适应调整。即通过加权等方式将多目标问题转化为单目标问题进行求解。

这样每次只能得到一种权值下的最优解。MOP的目标函数、约束函数可能是非线性、不连续的,无法满足数学优化问题的求解条件。传统的数学规划效率低,总的来说存在如下几个问题:

  1. 单目标权值难以确定;
  2. 各个目标之间量纲不统一,可能会造成单目标优化问题鲁棒性差;
  3. 单目标加权求和只能接近凸的帕累托面;
  4. 多目标优化问题的帕累托解集包含更多有效信息。

智能优化算法

 主要分三个阶段发展。按照不同的选择机制可以进行如下分类:

  1. 基于Pareto支配关系:NSGA、NSGA II。该方法主要是通过对不同解进行非支配排序完成个体选择,同时使用适应度共享策略使Pareto Front上的个体分布均匀。相较于NSGA算法,NSGA II算法使用快速非支配排序算法保障收敛,引入拥挤距离算子保障Pareto解的分布性,同时使用了精英策略。
  2. 基于分解的方法:MOEA/D。该方法将MOP分解为多个子问题,这样就可以通过优化每个子问题来求解一个MOP。
  3. 基于Indicator:IBEA。该方法根据性能评价模型对个体进行fitness赋值。

进化计算(三)——多目标优化基本概念_多目标优化igd_南木长的博客-CSDN博客

### 使用参考点提升帕累托前沿多样性的方多目标优化中,为了增加帕累托最优解集的多样性,可以采用基于参考点的方。该方通过引入多个预定义的参考点来引导搜索过程,从而确保解分布在不同的区域。 #### 参考点的选择与分布 参考点通常位于目标空间内,并均匀散布于理想点和 nadir 点之间。这些参考点作为导向指标,帮助算法探索不同方向上的潜在优质解。这种方能够有效防止所有解集中到某几个局部区域内[^1]。 #### 解向量与参考点关联策略 对于每一个候选解,计算其与各个参考点之间的距离度量。常用的距离度量方式包括加权欧氏距离或 Chebyshev 距离等。随后依据最小化原则选取最接近特定参考点的一个解作为代表个体参与进化操作。此过程中保持了种群成员对应各自独特参考点的关系不变,进而维持整个群体覆盖广泛的目标区间。 #### 多样性维护机制 除了利用参考点指导外,在选择下一代时还需加入额外措施保障多样性。例如实施拥挤比较算子(crowding distance),它会优先保留那些周围邻居较少即较为孤立的个体;又或是应用环境选择压力调整因子,动态调节各代间竞争强度以促进全局搜索能力的发展。 ```python def calculate_distance(solution, reference_point): """ 计算解决方案到指定参考点的距离 """ weights = [0.5, 0.5] # 假设两个目标函数具有相同权重 weighted_euclidean_dist = sum([(solution[i]-reference_point[i])**2 * weights[i] for i in range(len(solution))]) ** 0.5 chebyshev_dist = max(abs(solution[i]-reference_point[i]) for i in range(len(solution))) return min(weighted_euclidean_dist, chebyshev_dist) def associate_solution_to_reference_points(solutions, ref_points): associations = {} for sol in solutions: closest_ref_idx = None min_dist = float('inf') for idx, rp in enumerate(ref_points): dist = calculate_distance(sol.objectives, rp) if dist < min_dist: min_dist = dist closest_ref_idx = idx associations[sol.id] = (closest_ref_idx, min_dist) return associations ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值