MPNN(Message Passing Neural Network)、graph pooling 、unpooling

本文探讨了一种主要由组织成密集网络块的多层图神经网络(MPNN)层构成的状态编码器,利用图池化和上采样层来降低训练过程中的内存消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The state encoder is mainly composed of MPNN layers organized into DenseNet blocks, which use graph pooling and unpooling layers (see Section S1.5†) to reduce the memory cost during training.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值