Contrastive loss(NT-Xent loss)对比学习损失、代码实现

SimCLR使用的是这个损失,很多的对比学习使用的也是这个损失

softmax组成:

NT-Xent loss如下:

NT-Xent loss和softmax很像

一个batch N 个samples,因为有两条分支(正负)就是2N个samples,除了自己和对应的augmented image,其余2N-2都应该被视作negative pair。上式中,i,j 是positive pair,i, k是negative pair。

理解loss步骤:

1、构建正负样本对

我们先拿出Batch里面的第1个Pair:

2、使用 softmax 函数来获得这两个图像相似性的概率:

使用 softmax 函数来获得这两个图像相似的概率

这种 softmax 计算相当于计算正样本的相似性的概率,如果我们让这个softmax最大,那就意味着正样本相似性最大(分子尽可能的大),负样本相似性小(分母尽可能的小)

在这里,分母中的其余的项都是其他图片的增强之后的图片,也是negative samples。

3、切换为softmax的负对数

所以我们希望上面的softmax的结果尽量大,所以损失函数取了softmax的负对数:

损失函数取softmax的负对数

4、再对同一对图片交换位置以后计算损失:

5、计算每个Batch里面的所有Pair的损失之和取平均

加上温度系数T,形成最终的loss

代码实现:

latentclr/colat/loss.py at main · catlab-team/latentclr · GitHub

https://zhuanlan.zhihu.com/p/378953015

contrastive loss 详解_nt-xent-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值