SimCLR使用的是这个损失,很多的对比学习使用的也是这个损失
softmax组成:
NT-Xent loss如下:
NT-Xent loss和softmax很像
一个batch N 个samples,因为有两条分支(正负)就是2N个samples,除了自己和对应的augmented image,其余2N-2都应该被视作negative pair。上式中,i,j 是positive pair,i, k是negative pair。
理解loss步骤:
1、构建正负样本对
我们先拿出Batch里面的第1个Pair:
2、使用 softmax 函数来获得这两个图像相似性的概率:

这种 softmax 计算相当于计算正样本的相似性的概率,如果我们让这个softmax最大,那就意味着正样本相似性最大(分子尽可能的大),负样本相似性小(分母尽可能的小)
在这里,分母中的其余的项都是其他图片的增强之后的图片,也是negative samples。
3、切换为softmax的负对数
所以我们希望上面的softmax的结果尽量大,所以损失函数取了softmax的负对数:

4、再对同一对图片交换位置以后计算损失:
5、计算每个Batch里面的所有Pair的损失之和取平均
加上温度系数T,形成最终的loss
代码实现:
latentclr/colat/loss.py at main · catlab-team/latentclr · GitHub