均值(mean)、标准差(std)、信噪比(SNR)、标准化,它们之间的联系和意义

均值(mean)

均值的意义:

均值提供了数据的中心值,能够反映数据的整体趋势

标准差(std)

意义:

标准差是衡量数据的分散程度,它表示数据点平均离开平均值有多远。

68-95-99.7 规则: 在正态分布中,标准差有一个特别重要的性质,通常被称为 68-95-99.7 规则:

  1. 约68%的数据落在平均值正负一个标准差的范围内。
  2. 约95%的数据落在平均值正负两个标准差的范围内。
  3. 约99.7%的数据落在平均值正负三个标准差的范围内。

概率密度函数的形状:标准差决定了正态分布曲线的"宽度"或"陡峭程度"。

  1. 较小的标准差会产生一个较窄且高的分布曲线。说明数据比较集中在均值附近
  2. 较大的标准差会产生一个较宽且矮的分布曲线。说明数据比较散乱

标准化 (Normalization)

定义

标准化是将数据通过减去均值并除以标准差的方式进行转换,使数据具有零均值和单位方差(标准差为1)。

意义

将给定数据与目标数据的分布对齐

标准化的目的是消除数据的量纲差异,使不同特征在同一个尺度上进行比较,从而更好地适应模型的训练过程。标准化后的数据具有零均值和单位标准差,使得模型能够更快收敛。

信噪比 (Signal-to-Noise Ratio, SNR)

计算

通常计算为特征的均值与标准差的比值

意义

信噪比是数据中的信号与噪声的比值,表示某个特征中有用信息(信号)与无用信息(噪声)的比例。

信噪比越高,表示该样本含有更多的信息量,该样本比其他样本更重要

信噪比的值:

  • 信噪比大于1:特征在目标样本中表现显著,具有较好的区分能力和稳定性。
  • 信噪比小于1:特征的表现不够显著,不适合用于分析或建模。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值