基于RBF和BP神经网络的信道估计算法的仿真与分析

本文通过神经网络进行信道估计,对比了RBF神经网络和BP神经网络的性能。仿真结果显示,BP神经网络在信道估计的误码率上略优于RBF神经网络。BP网络由输入层、隐藏层和输出层构成,通过前向传播和误差反向传播进行学习。RBF网络则是一种三层前向网络,以加快学习速度并避免局部极小值问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用神经网络进行信道估计构架

 

整个仿真系统的结构如上所示。

       这里,我们主要是通过对导频序列和已知的导频序列进行神经网络训练,得到一个神经网络,对输入的新号进行实时的预测和估计。最后得到所要的接受信号。

      整个流程基本如下所示:

检测导频位置;

提取导频

使用神经网络,将检测到的导频和已知的导频序列进行训练;

最后进行实时的预测和估计。

系统仿真结果如下所示:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值