让我们来谈谈RT-DETR——重新定义实时目标检测
在过去的几年里,目标检测领域经历了飞速的进步,尤其是随着YOLO系列和Transformer-based模型的出现。YOLO系列以其速度和效率一直在实时目标检测中占据主导地位,而Transformer模型,特别是DETR(DEtection TRansformers),则通过创新的端到端架构为目标检测开辟了新的方向。然而,传统的YOLO和DETR在某些场景下仍然存在限制,尤其是在计算成本和速度方面。2024年,RT-DETR(Real-Time DEtection TRansformer)应运而生,这个新模型在目标检测领域掀起了不小的波澜。
YOLO与NMS:快速但有瓶颈
我们先从YOLO说起。YOLO模型的设计本身就具有速度上的优势,因为它使用了锚框(Anchor Boxes)来预定义物体的位置,并通过回归的方式预测物体的类别和坐标。然而,YOLO的性能瓶颈之一就是NMS(Non-Maximum Suppression,非最大抑制)。NMS的作用是消除冗余的检测