让我们来谈谈RT-DETR——重新定义实时目标检测(YOLO)

在这里插入图片描述

让我们来谈谈RT-DETR——重新定义实时目标检测

在过去的几年里,目标检测领域经历了飞速的进步,尤其是随着YOLO系列和Transformer-based模型的出现。YOLO系列以其速度和效率一直在实时目标检测中占据主导地位,而Transformer模型,特别是DETR(DEtection TRansformers),则通过创新的端到端架构为目标检测开辟了新的方向。然而,传统的YOLO和DETR在某些场景下仍然存在限制,尤其是在计算成本和速度方面。2024年,RT-DETR(Real-Time DEtection TRansformer)应运而生,这个新模型在目标检测领域掀起了不小的波澜。

YOLO与NMS:快速但有瓶颈

我们先从YOLO说起。YOLO模型的设计本身就具有速度上的优势,因为它使用了锚框(Anchor Boxes)来预定义物体的位置,并通过回归的方式预测物体的类别和坐标。然而,YOLO的性能瓶颈之一就是NMS(Non-Maximum Suppression,非最大抑制)。NMS的作用是消除冗余的检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空间机器人

您的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值