The Graph-Based Behavior-Aware Recommendation for Interactive News

该文提出了一种名为GBAN的模型,利用异质图来处理用户与新闻的多种交互行为,包括点击、喜欢、关注等。GBAN通过构建交互行为图,应用DeepWalk和G-CNN来学习用户和新闻的表征,同时引入核心和敏感性特征来衡量用户兴趣的集中程度,以实现个性化推荐的准确性和多样性平衡。
摘要由CSDN通过智能技术生成

Abstract

  • 缺点

然而,大多数现有的方法仍然使用单次点击行为作为判断用户喜好的唯一标准。

此外,尽管异质图已被应用于不同的领域,但仍需要一种适当的方式来构建互动新闻数据的异质图,并在其上建立适当的学习机制

我们提出了一个基于图形的行为感知网络,它同时考虑了六种不同类型的行为以及用户对新闻多样性的需求。

首先,我们为多层次和多类别的数据建立一个交互行为图

其次,我们在行为图上应用DeepWalk来获得实体语义,然后建立一个名为G-CNN的基于图的卷积神经网络来学习新闻表征,以及一个基于注意力的LSTM来学习行为序列表征。

第三,我们为行为图引入了核心和敏感性特征,这些特征衡量用户兴趣的集中程度。这些特征影响着我们的个性化推荐系统的准确性和多样性之间的权衡。

Introduction

直观地说,集中度高的用户往往会对某类新闻产生很多类似的行为,而集中度低的用户往往会有更多不同的行为。

如何在异质图结构数据上建立一个学习框架,可以处理多种行为,同时,根据用户的兴趣集中程度推荐新闻。

在这项工作中,我们通过我们提出的称为基于图的行为感知网络(GBAN)的模型来回答上述问题。

这里,六种可能的行为是:取消点击、点击、喜欢、关注、评论和分享。

我们指出,当其他五种行为可能发生但没有发生时,"取消点击 "行为会发生。

GBAN (基于图形的行为感知网络)由四部分组成:

建立一个互动行为图。每个节点代表一个用户、一条新闻、一个类别、一个标签或一个主题,两个节点是否由一条边连接,由它们是否有现实的联系决定。例如,一个用户节点和一个新闻节点之间的边意味着在历史上触发了五个(积极)行为中的一个。此外,我们根据行为类型给这条边分配一个权重,这个权重按比例增加。

基于行为图,我们执行两个任务:计算每个用户诱导的子图的核心和可塑性,作为他/她的集中度特征,并为每个节点学习一个向量表示。在这里,核心和可塑性是图论中的概念[34],它们定量地衡量节点的重要性,并为用户的集中程度提供有用的见解。

利用矢量表征,我们设计了一个名为G-CNN的基于图形的卷积网络来学习新闻表征。此外,我们设计了一个基于注意力的LSTM来学习用户的行为序列表征。

我们将用户表征与候选新闻表征结合起来,将其送入两个完全连接的层,以执行六种分类任务。

Related work

Core and Coritivity(核心与敏感度)

核心

在图网络中,总有一些实体位于重要位置并发挥着关键作用。移除这些实体可能会导致图进入一个分散的状态。我们称这些实体为图网络的核心。

如果S∈C(G)并且满足h(G)=ω(G-S)-|S|,则该集合S称为图G的核心。

敏感度

给定一个无向连接图G,我们把它的可达性h(G)定义为:h(G)=max{ω(G-S)-|S| : S∈C(G)},其中C(G)表示G的所有顶点切割集合,ω(G-S)是G-S的连接成分数。对于S∈C(G),G-S表示通过删除节点集S以及与S中任何节点相关的所有边而得到的图,|S|表示S中的节点数。”

“The Proposed Method”

“We decompose GBAN into five steps introduced in the next five subsections respectively: interaction behavior graph construction, graph representation learning, user concentration feature learning, user and news representations, and behavior prediction.
----
我们将GBAN分解为五个步骤,在接下来的五个小节中分别介绍:交互行为图构建、图表示学习、用户集中特征学习、用户和新闻表示以及行为预测。”

算法流程图

首先,我们根据用户的资料和行为日志构建一个交互行为图。

其次,我们从图表示学习中获得节点嵌入,同时计算每个用户引起的子图的核心和可塑性,作为他/她的集中特征。

第三,我们设计了一个GCNN来学习新闻表征,并设计了一个基于注意力的LSTM来学习行为序列表征,这些表征与浓度特征一起构成了用户表征。

最后,我们将用户表征与候选新闻表征结合起来,并将其送入一个两层全连接的神经网络,以执行六种分类任务。

在这里插入图片描述

GBAN的工作流程。从左下角到右上角,GBAN构建了一个交互行为图,计算核心和共性并并行进行图表示学习,通过GCNN学习新闻表示,通过LSTM学习行为序列表示,并将用户表示和候选新闻表示送入两个全连接层以预测六个行为的可能性。
1.交互行为图构建

2.图形表征学习

3.集中特征学习
在这里插入图片描述

4.新闻和用户表征学习

集合新闻的特征

新闻特征学习

行为序列表征学习

集合用户的表征

5.行为预测

到目前为止,我们已经说明了如何获得用户和新闻的表征。我们现在考虑行为预测:用户在未浏览过的候选新闻上会有什么行为。我们将排名问题形式化为一个六分类问题。我们相信六分类任务比CTR预测更适合于交互式新闻推荐。

Experiment

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值