强化学习的一些简单的认知

强化学习是机器学习的一个重要研究方向,强化学习就是让机器人和环境进行交互,环境通过给机器的每一个动作打分,让机器人根据每一个动作的分数,进行重复的尝试,学习,累计经验。目的是通过和环境的交互找到一组状态动作对的序列(机器人在此序列上累计分数最高)。
强化学习的基本分类

Model-free 和 Model-based
Model-freeModel-based
无模型的就是不理解环境有模型的就是理解环境

Moder-free就是机器人不知道下一步采取那个动作,也不知道才会那个动作会反馈怎么的分数,只能根据具体不断低反馈进行学习;而Model-based是机器人可以根据模型预判下一步采取那个动作可以得到较高的分数,而不用通过不断的尝试进行学习。

基于概率 和 基于价值
基于概率(policy-based)基于价值(value-based)
每个动作对应一个概率(通过概率选取当前状态下的动作)每个动作对应一个价值 (选取当前状态下下对应最大价值的动作)
连续的动作离散的动作

基于概率的强化学习是机器人通过概率选取当前状态下的动作,不一定是选取最高概率对应的动作,只是最大概率对应的动作选取到的概率最大,对应的RL算法有 Policy Gradients 等;基于价值的的强化学习是机器人直接选取当前状态对应最大值对应的动作,对应的RL算法有 Q learning, Sarsa 等。最为厉害的有两个模型组合的算法 Actor-Critic, actor 会基于概率做出动作, 而 critic 会对做出的动作给出动作的价值, 这样就在原有的 policy gradients 上加速了学习过程。

回合更新 和 单步更新
回合更新(Monte-carlo update)单步更新(Temporal-Difference update)
机器人从开始到停止条件结束的一个回合后进行更新上一回合每个动作对应的概率或者价值机器人每采取一个动作结束到达下一个状态后,进行更新一个每个动作对应的概率或者价值

在这里插入图片描述
强化学习的回合更新单步更新可以就像游戏中,如果我从一游戏开始到结束这一个回合结束后,更新回合中对应的行为准则,这就是回合更新;如果在游戏中没进行一步,就更新上一步的行为准则就是单步更新。

再来说说方法, Monte-carlo learning 和基础版的 policy gradients 等 都是回合更新制, Qlearning, Sarsa, 升级版的 policy gradients 等都是单步更新制. 因为单步更新更有效率, 所以现在大多方法都是基于单步更新. 比如有的强化学习问题并不属于回合问题.

在线学习 和 离线学习
在线学习 (on-policy)离线学习 (off-policy)
机器人的策略是通过实时采样训练策略机器训练模型的训练集可以是已经采集好的数据,也可以是实时采样的数据

在线学习和离线学习, 所谓在线学习, 就是指我必须本人在场, 并且一定是本人边玩边学习, 而离线学习是你可以选择自己玩, 也可以选择看着别人玩, 通过看别人玩来学习别人的行为准则, 离线学习 同样是从过往的经验中学习, 但是这些过往的经历没必要是自己的经历, 任何人的经历都能被学习. 或者我也不必要边玩边学习, 我可以白天先存储下来玩耍时的记忆, 然后晚上通过离线学习来学习白天的记忆.

最典型的在线学习就是 Sarsa 了, 还有一种优化 Sarsa 的算法, 叫做 Sarsa lambda, 最典型的离线学习就是 Q learning, 后来人也根据离线学习的属性, 开发了更强大的算法, 比如让计算机学会玩电动的 Deep-Q-Network.

具体强化学习算法简单介绍:

Q-Learning

Q-Learning算法是首先会建一张Q表格,表格的大小是状态数)乘以每个状态下对应的动作数,然后通过每执行一个动作进行一此Q(s,a)的更新(更新对应Q表格中的值)。
具体的Q-Learning算法如下:
在这里插入图片描述
上图中的Q真实值为
在这里插入图片描述
其中R是在状态s下采取动作a获得的奖励值,gamma 是对未来 reward 的衰减值,maxa’Q(s’,a’),是下一状态采取的最大Q值,对应的下一个状态是s’,最大Q值对应的动作是a‘。
大部分的强化学习都是通过Qlearning算法改进由来的。

### 回答1: 以下是一个简单认知无线电功率控制的强化学习代码,使用的是 Python 和 TensorFlow。 首先,我们需要定义状态空间、动作空间和奖励函数。在这个例子中,状态空间为当前信道状态和历史功率控制决策,动作空间为连续的功率控制值。奖励函数为最大化信道容量。 ```python import numpy as np import tensorflow as tf # 定义状态空间 STATE_DIM = 2 # 定义动作空间 ACTION_DIM = 1 # 定义奖励函数 def reward_func(state, action): # 计算信道容量 capacity = ... return capacity ``` 接下来,我们使用 TensorFlow 定义一个神经网络,来估计动作值函数 Q(s,a)。网络的输入为状态 s 和动作 a,输出为 Q 值。在这个例子中,我们使用了一个简单的全连接神经网络。 ```python # 定义神经网络 class QNetwork: def __init__(self, state_dim, action_dim, learning_rate): self.state_input = tf.placeholder(tf.float32, [None, state_dim]) self.action_input = tf.placeholder(tf.float32, [None, action_dim]) self.target_input = tf.placeholder(tf.float32, [None, 1]) x = tf.concat([self.state_input, self.action_input], axis=1) x = tf.layers.dense(x, 64, activation=tf.nn.relu) x = tf.layers.dense(x, 64, activation=tf.nn.relu) self.q_value = tf.layers.dense(x, 1) self.loss = tf.reduce_mean(tf.square(self.target_input - self.q_value)) self.optimizer = tf.train.AdamOptimizer(learning_rate).minimize(self.loss) ``` 然后,我们使用深度 Q 学习算法来训练神经网络。算法的核心是使用贝尔曼方程更新动作值函数,从而最大化累计奖励。 ```python # 定义深度 Q 学习算法 class DQN: def __init__(self, state_dim, action_dim, learning_rate, discount_factor, epsilon): self.q_network = QNetwork(state_dim, action_dim, learning_rate) self.discount_factor = discount_factor self.epsilon = epsilon def act(self, state): # 使用 ε-贪心策略选择动作 if np.random.rand() < self.epsilon: return np.random.uniform(low=-30, high=30, size=(1,)) else: return self.q_network.q_value.eval(feed_dict={self.q_network.state_input: [state]}, session=tf.get_default_session())[0] def train(self, state, action, reward, next_state, done): # 使用贝尔曼方程更新动作值函数 target = reward if not done: target += self.discount_factor * np.max(self.q_network.q_value.eval( feed_dict={self.q_network.state_input: [next_state]}, session=tf.get_default_session())) self.q_network.optimizer.run(feed_dict={ self.q_network.state_input: [state], self.q_network.action_input: [action], self.q_network.target_input: [target] }) ``` 最后,我们使用定义好的状态空间、动作空间、奖励函数和深度 Q 学习算法来实现强化学习认知无线电功率控制。 ```python # 定义主程序 def main(): # 初始化深度 Q 学习算法 dqn = DQN(state_dim=STATE_DIM, action_dim=ACTION_DIM, learning_rate=0.001, discount_factor=0.9, epsilon=0.1) # 训练模型 for episode in range(1000): state = ... total_reward = 0 done = False while not done: action = dqn.act(state) next_state = ... reward = reward_func(state, action) dqn.train(state, action, reward, next_state, done) state = next_state total_reward += reward print('Episode %d, Total Reward: %d' % (episode, total_reward)) # 使用训练好的模型进行预测 state = ... action = dqn.act(state) print('Power Control Decision: %f' % action) ``` 这是一个简单强化学习认知无线电功率控制代码示例。在实际应用中,还需要考虑更多的因素,比如信道的时变性、多用户干扰等。 ### 回答2: 强化学习认知无线电功率控制代码用于提高无线电系统的性能和效率,以实现更好的功率管理和频谱利用。以下是一个简单认知无线电功率控制代码示例: 1. 导入所需的库: ```python import numpy as np import random ``` 2. 初始化环境的状态空间、动作空间和Q表: ```python state_space = [0, 1, 2, 3, 4] # 状态空间 action_space = [0, 1] # 动作空间。0表示减小功率,1表示增大功率 # 初始化Q表,Q表的维度为状态空间和动作空间的大小 Q_table = np.zeros((len(state_space), len(action_space))) ``` 3. 定义强化学习的超参数: ```python alpha = 0.5 # 学习率 gamma = 0.5 # 折扣因子 epsilon = 0.1 # 探索率 num_episodes = 1000 # 迭代次数 # 定义奖励函数 rewards = [] ``` 4. 定义强化学习的训练过程: ```python for episode in range(num_episodes): state = random.choice(state_space) # 随机选择初始状态 done = False # 判断是否达到终止状态 while not done: if random.uniform(0, 1) < epsilon: action = random.choice(action_space) # 随机选择动作 else: action = np.argmax(Q_table[state]) # 根据Q值选择动作 # 执行动作,观察下一个状态和奖励 next_state, reward, done = execute_action(state, action, ...) # 更新Q值 Q_table[state, action] = Q_table[state, action] + alpha * (reward + gamma * np.max(Q_table[next_state]) - Q_table[state, action]) state = next_state # 更新状态 rewards.append(sum(rewards)) # 记录每个回合的总奖励 ``` 5. 定义执行动作函数和其他相关函数: ```python def execute_action(state, action, ...): # 执行动作的具体操作,包括调整功率、检测频谱利用等 # 返回执行动作后的下一个状态、奖励和是否达到终止状态 ... return next_state, reward, done def main(): # 主函数,用于调用训练过程和其他操作 ... if __name__ == "__main__": main() ``` 这只是一个简单的示例,实际的认知无线电功率控制代码中需要根据具体场景和需求进行进一步的优化和细化。强化学习认知无线电功率控制代码可以通过与环境互动,不断地通过优化Q值来自主学习和提升性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值