医学小目标检测:Retina U-Net

介绍了一种结合U-Net与RetinaNet的新型医学图像检测模型RetinaU-Net,该模型旨在利用分割监督提升医疗对象检测效果。论文对比了旧版Unet模型,并提供了相关代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:Retina U-Net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection
代码:https://github.com/MIC-DKFZ/medicaldetectiontoolkit
这是一篇应用型论文,只是将U-Net和Retina 结合了一下,用于医学图像检测。
在这里插入图片描述

比较的模型也很少:
在这里插入图片描述
只是简单的用了Unet,比较老了
注:Paul F. Jaeger, Simon A. A. Kohl, Sebastian Bickelhaupt, Fabian Isensee, Tristan Anselm Kuder, Heinz-Peter Schlemmer, Klaus H. Maier-Hein ; Proceedings of the Machine Learning for Health NeurIPS Workshop, PMLR 116:171-183, 2020.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值