直通滤波....

// 点云滤波模块


#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
#include <pcl/filters/passthrough.h>

// 点云显示
boost::shared_ptr<pcl::visualization::PCLVisualizer> simpleVis(pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud) {
	// --------------------------------------------
    // -----Open 3D viewer and add point cloud-----
    // --------------------------------------------

    boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer ("3D viewer"));
    viewer->setBackgroundColor(0, 0, 0);
    viewer->addPointCloud<pcl::PointXYZ>(cloud, "sample cloud");
    viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_FONT_SIZE, 3, "sample");
    viewer->initCameraParameters();

    return (viewer);

}
int main() {

// step1: 读取点云数据
	std::string path = "E:\\c++Code\\pcl\\ConsoleApplication1\\data\\filters\\table_scene_lms400.pcd";
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);  // boost 共享指针并进行实例化
    pcl::PointCloud<pcl::PointXYZ>::Ptr final(new pcl::PointCloud<pcl::PointXYZ>);

	if (pcl::io::loadPCDFile<pcl::PointXYZ>(path, *cloud)  == -1) {
		PCL_ERROR("Couldn't read file test_pcd.pcd \n");
		return (-1);
	}

    // 设置滤波器
    pcl::PassThrough<pcl::PointXYZ> pass;
    pass.setInputCloud(cloud);       //设置输入点云
    pass.setFilterFieldName("z");    //设置过滤时所需要点云类型的Z字段
    pass.setFilterLimits(-1.5, -1.3);
    pass.filter(*final);




    // 创建可视化对象并加入原始点云或者所有的局内点
    boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer1;
    boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer2;
    viewer1 = simpleVis(cloud);
    viewer2 = simpleVis(final);

    while (!viewer1->wasStopped())
    {
        viewer1->spinOnce(100);
        boost::this_thread::sleep(boost::posix_time::microseconds(100000));
    }
    while (!viewer2->wasStopped())
    {
        viewer2->spinOnce(100);
        boost::this_thread::sleep(boost::posix_time::microseconds(100000));
    }
}

在这里插入图片描述

基于遗传算法的微电网调度(风、光、蓄电池、微型燃气轮机)(Matlab代码实现)内容概要:本文档介绍了基于遗传算法的微电网调度模型,涵盖风能、太阳能、蓄电池和微型燃气轮机等多种能源形式,并通过Matlab代码实现系统优化调度。该模型旨在解决微电网中多能源协调运行的问题,优化能源分配,降低运行成本,提高可再生能源利用率,同时考虑系统稳定性与经济性。文中详细阐述了遗传算法在求解微电网多目标优化问题中的应用,包括编码方式、适应度函数设计、约束处理及算法流程,并提供了完整的仿真代码供复现与学习。此外,文档还列举了大量相关电力系统优化案例,如负荷预测、储能配置、潮流计算等,展示了广泛的应用背景和技术支撑。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、智能电网优化研究的工程技术人员。; 使用场景及目标:①学习遗传算法在微电网调度中的具体实现方法;②掌握多能源系统建模与优化调度的技术路线;③为科研项目、毕业设计或实际工程提供可复用的代码框架与算法参考; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注目标函数构建与约束条件处理,同时可参考文档中提供的其他优化案例进行拓展学习,以提升综合应用能力。
### PCL库中直通滤波的使用方法及实现方式 #### 1. 直通滤波简介 直通滤波是PCL(Point Cloud Library)中的一种点云处理方法,用于裁剪点云数据的特定范围。通过设置某一坐标轴(如X、Y或Z轴)上的过滤范围,直通滤波器可以保留或去除指定范围内的点云数据[^2]。 #### 2. 直通滤波的作用 直通滤波的主要作用是对点云数据进行裁剪和过滤,从而聚焦于感兴趣的区域。例如,在三维空间中,用户可以通过设置X、Y或Z轴的范围来保留或去除特定区域的点云数据[^1]。 #### 3. 直通滤波的实现方式 以下是基于C++语言的直通滤波实现示例,展示了如何对点云数据进行范围筛选: ```cpp #include <pcl/io/pcd_io.h> #include <pcl/filters/passthrough.h> #include <pcl/point_types.h> // 定义直通滤波函数 pcl::PointCloud<pcl::PointXYZ>::Ptr passThroughFilter( pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, const std::string& axis, float min_limit, float max_limit) { pcl::PassThrough<pcl::PointXYZ> pass; // 创建直通滤波器对象 pass.setInputCloud(cloud); // 设置输入点云 pass.setFilterFieldName(axis); // 设置要过滤的坐标轴("x"、"y" 或 "z") pass.setFilterLimits(min_limit, max_limit); // 设置过滤范围 pcl::PointCloud<pcl::PointXYZ>::Ptr filtered_cloud(new pcl::PointCloud<pcl::PointXYZ>); pass.filter(*filtered_cloud); // 应用滤波器 return filtered_cloud; // 返回过滤后的点云 } ``` #### 4. 参数说明 - **`setInputCloud(cloud)`**:设置输入点云数据。 - **`setFilterFieldName(axis)`**:指定过滤的坐标轴("x"、"y"或"z")[^3]。 - **`setFilterLimits(min_limit, max_limit)`**:定义过滤范围,保留范围内的点云数据[^4]。 - **`setFilterLimitsNegative(bool)`**:决定是否反转过滤结果(默认为`false`,即保留范围内点;设置为`true`时,保留范围外点)[^3]。 #### 5. 示例代码 以下是一个完整的直通滤波应用示例,展示如何从输入点云中提取Z轴在0.5到1.5范围内的点云数据: ```cpp #include <pcl/io/pcd_io.h> #include <pcl/filters/passthrough.h> #include <pcl/point_types.h> int main() { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ>("input_cloud.pcd", *cloud); // 加载点云文件 pcl::PassThrough<pcl::PointXYZ> pass; pass.setInputCloud(cloud); pass.setFilterFieldName("z"); // 设置过滤轴为Z轴 pass.setFilterLimits(0.5, 1.5); // 设置Z轴范围 [0.5, 1.5] pcl::PointCloud<pcl::PointXYZ>::Ptr filtered_cloud(new pcl::PointCloud<pcl::PointXYZ>); pass.filter(*filtered_cloud); // 执行滤波 pcl::io::savePCDFile("filtered_cloud.pcd", *filtered_cloud); // 保存过滤后的点云 return 0; } ``` #### 6. 注意事项 - 确保点云数据的单位与过滤范围一致(通常为米)。 - 如果需要对多个轴进行过滤,可以串联多个直通滤波器[^2]。 - 对于彩色点云,需使用`pcl::PointXYZRGB`类型替代`pcl::PointXYZ`[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值