题目:
如果,其中:
对某个,令。证明当时使最大。另外,证明。它们为什么是相同的?如果,基于的的MMSE估计量是什么?
解答:
根据多维高斯分布的定义,可以得到:
根据题目条件,此时:
代入后得到:
根据习题10-12中的推导,得到:
代入后,得到:
那么:
求的最大值,本质上是求的最小值:
通过求导得到:
因此,当时, 达到最大值。
而如果通过(10.16)的MMSE公式直接计算:
而根据条件:, ,,带入后得到:
下面对上述一致性做出解释:
首先,根据贝叶斯定理,得到:
其中边缘概率:
因此:
其中是关于的函数,与无关。因此对于给定的,与具有相同的形态,只是相差一个由决定的比例因子。因此,和具有关于的相同极值点,即:
而根据定理10.1,此时条件分布也是高斯分布,对于高斯分布来说,极值点出现在均值处,即
也就是此时两种方法,都可以得到相同的估计量。
本质上,对求导的方法,对应的是第11章的最大后验估计(MAP),该方法不需要获得中对于分母的积分(也就是MMSE估计量,实际工作情况下很难获得解析解),但对于高斯分布来说,两者存在一致性(例11.5上面一段话也有相同的解释)。因此,这种情况下,MAP相比MMSE更加计算方便,可以获得解析解。
但对于多维矢量估计,MAP又牵涉到了多维最大值求解,也很费劲,因此如果限定估计量是线性的,直接用(10.16)得到MMSE的闭式解,该公式中仅需要知道PDF的前两阶矩就可以了(此处对应就是第12章线性贝叶斯估计量的内容。
对于高斯分布,上述几种方法是统一的,因此哪种方便用那种。
对于题目给的最后特殊情况,即:,那么根据(10.16):
也就是独立情况下,贝叶斯估计与之前的MSE估计一致了。