yolov7.yaml文件详解

本文详细解析了YOLOv7中的关键参数如nc(类别数量)、depth_multiple和width_multiple,以及backbone和head的设计,包括不同特征图的anchors布局。重点介绍了网络的深度与宽度调整策略。了解这些有助于深入理解YOLOv7的架构和训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1、parameters

(1)nc代表目标检测所检测的种类

(2)depth_multiple:控制通道的深度的系数,表示channel的缩放系数,就是将配置里面的backbone和head部分有关通道的设置,全部乘以该系数即可;

width_multiple:控制网络宽度的系数;

在此解释一下网络深度与网络宽度

网络深度

实际在构建网络模型的时候,并不是直接使用上述第二个参数,而是用网络深度去乘以第二个参数,最终获得的数量才是真正的层数量。举个例子,此时网络深度是0.33,某个层的第二个参数是3,那么实际在构建网络模型的时候只创建了0.33*3=1个,并不是三个。

网络宽度同网络深度都需要乘系数

 2、anchors

anchor我们经常称为锚 

anchors有三行分为对应大中小特征图,分为对应大特征图、中特征图、小特征图

其中数字每种类型可看成三对,每个预测头所对应的anchors长宽大小

3、backbone(骨干网络*)

# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0
  
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2      
   [-1, 1, Conv, [64, 3, 1]],
   
   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4  
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8  
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37
         
   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32  
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]

from 表示该层的输入从哪来。-1表示输入取自上一层,-2表示上两层,3表示第3层(从0开始数),[-1, 4]表示取自上一层和第4层,依次类推。。。。。
number 表示该层模块堆叠的次数,对于C3、BottleneckCSP等模块,表示其子模块的堆叠,具体细节可以查看源代码。当然最终的次数还要乘上depth_multiple系数。
module 表示该层的模块是什么类型。Conv就是卷积+BN+激活模块。所有的模块在 model/common.py 中都有定义。
args 表示输入到模块的参数。例如Conv:[128, 3, 2] 表示输出通道128,卷积核尺寸3,strid=2,当然最终的输出通道数还要乘上 width_multiple,对于其他模块,第一个参数值一般都是指输出通道数,具体细节可以看 model/common.py 中的定义。


4、head

# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51
  
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63
   
   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],
   
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88
      
   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],
   
   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   
   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [101, 1, RepConv, [1024, 3, 1]],

   [[102,103,104], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

其他规则和backbone规则一样,在这里解释一下

[102,103,104], 1, IDetect, [nc, anchors]

[[17, 20, 23], 1, Detect, [nc, anchors]] 表示把第102、103和104三层作为Detect模块的输入,

[nc, anchors]是初始化Detect模块的参数。Detect模块在model/yolo.py中声明,相当于从模型中提出想要的层作为输入,转换为相应的检测头,其输出用来计算loss

Yolov7是一种基于深度学习的目标检测算法,它使用的配置文件格式为yaml。下面是yolov7.yaml文件的解读: ``` # Model parameters nc: 80 # 类别数 depth_multiple: 1.0 # 网络深度缩放因子 width_multiple: 1.0 # 网络宽度缩放因子 anchors: - [10,13, 16,30, 33,23] # anchor1 - [30,61, 62,45, 59,119] # anchor2 - [116,90, 156,198, 373,326] # anchor3 backbone: # layer 0~3 # [from, number, module, args] [[-1, 1, Conv, [64, 3, 2]], # 0 [-1, 1, Bottleneck, [64]], [1, 1, Bottleneck, [64]], [1, 1, Bottleneck, [64]], # 3 # layer 4~7 [2, 1, Bottleneck, [128, 'S']], [1, 2, Bottleneck, [128]], [2, 1, Bottleneck, [128]], [1, 2, Bottleneck, [128]], # 7 # layer 8~11 [4, 1, Bottleneck, [256, 'S']], [1, 8, Bottleneck, [256]], [2, 1, Bottleneck, [256]], [1, 8, Bottleneck, [256]], [2, 1, Bottleneck, [256]], [1, 8, Bottleneck, [256]], [2, 1, Bottleneck, [256]], [1, 8, Bottleneck, [256]], # 11 # layer 12~15 [8, 1, Bottleneck, [512, 'S']], [1, 8, Bottleneck, [512]], [2, 1, Bottleneck, [512]], [1, 8, Bottleneck, [512]], [2, 1, Bottleneck, [512]], [1, 8, Bottleneck, [512]], [2, 1, Bottleneck, [512]], [1, 8, Bottleneck, [512]], # 15 # layer 16~19 [16, 1, Bottleneck, [1024, 'S']], [1, 4, Bottleneck, [1024]], [2, 1, Bottleneck, [1024]], [1, 4, Bottleneck, [1024]], # 19 ] head: [[-1, 3, Conv, [512, 1, 1]], [-2, 1, Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, []], [1, 1, Conv, [512, 1, 1]], [1, 3, Conv, [1024, 3, 1]], [1, 1, Conv, [512, 1, 1]], [1, 3, Conv, [1024, 3, 1]], [1, 1, Conv, [512, 1, 1]], [1, 3, Conv, [1024, 3, 1]], [-1, 1, Conv, [nc, 1, 1]]] ``` 该配置文件包含了Yolov7模型的参数、锚点、网络结构和输出层。 - nc: 表示类别数,此处为80类物体。 - depth_multiple和width_multiple分别表示网络深度和宽度的缩放因子,用于缩放网络结构。 - anchors表示锚点的大小,一共有三个锚点,每个锚点有三个参数,分别表示宽、高和偏移量。 - backbone表示骨干网络结构,包含了多层的卷积和残差块,每个块有不同的参数,分别表示输入层、块内卷积层的数量、块内卷积层的类型和参数。 - head表示输出层,这里使用了多个卷积层和上采样层,最后输出预测结果。 通过调整这些参数,可以改变模型的性能和速度,从而适应不同的应用场景。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

把爱留给SCI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值