卡尔曼滤波算法的核心思想是,根据当前的仪器"测量值" 和上一刻的 “预测量” 和 “误差”,计算得到当前的最优量. 再预测下一刻的量,把误差纳入计算, 而且分为预测误差和测量误差两种,通称为 噪声。误差独立存在, 始终不受测量数据的影响。
在卡尔曼滤波器中所有用到不确定性的都要用协方差矩阵来表示
卡尔曼估计实际由两个过程组成:预测与校正,在预测阶段,滤波器使用上一状态的估计,做出对当前状态的预测。在校正阶段,滤波器利用对当前状态的观测值修正在预测阶段获得的预测值,以获得一个更接进真实值的新估计值。
公式推导可以参见:该博客第三点
可结合起来看更加容易理解。