电气绝缘图-标准GB9706.1-2020

本文介绍了电气间隙和爬电距离的概念,阐述了两者在高压设备设计中的重要性,包括最小爬电距离的规定、高海拔影响、材料分级以及具体应用实例,如不同防护级别的设备要求和海拔倍增系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概念

  1. 电气间隙 air clearance两个导体部件之间在空气中的最短路径
  2. 爬电距离 creepage distance:两个导体部件之间沿绝缘材料表面的最短距离

二、规则

  • 最小爬电距离:根据表12~表16,如果最小的爬电距离小于最小的电气间隙,那么最小电气间隙值应作为最小爬电距离。
  • 高海拔影响:当 ME设备预期在加压环境下使用,例如机舱内,应根据对应有关大气压力来确定表8的倍增系数,电气间隙要乘以该系数。爬电距离不受倍增系数的影响,但应至少与电气间隙与倍增系数的乘积一样大。
  • 材料组分组:
  • 污染等级分级:
  • 提供对患者的防护措施的最小爬电距离和电气间隙:
  • 网电源部分提供对操作者的防护措施的最小电气间隙:
    • 对操作者的防护措施的最小爬电距离:
    • 过压类别

    三、实例

    ​​​​​​​

    污染等级分级

    2

    -

    过电压类别

    -

    海拔高度

    ≤3000m

    -

    接触患者但在应用部分定义之外的部分

    S不适用   £适用

    -

    路径

    防护措施数量和类型:

    MOOP/MOPP

    工作电压

    爬电距离要求值(mm)

    电气间隙要求值(mm)

    试验电压(V)

    路径说明

    电压Vr.m.s.

    电压Vpeak

    A

    1MOOP

    240

    340

    2.5

    2.31)

    a.c.1500

    L和N之间

    B

    2MOOP

    240

    340

    5.0

    4.61)

    a.c.3000

    L&N与适配器未保护接地的可触及部分之间

    C

    2MOPP

    240

    340

    8.0

    5.0

    a.c.4000

    电源初级与次级之间

    D

    2MOOP

    240

    340

    5.0

    4.61)

    a.c.3000

    L&N与主机未保护接地的可触及部分之间

    E

    2MOOP

    240

    340

    5.0

    4.61)

    a.c.3000

    L&N与脚踏开关之间

    F

    2MOPP

    240

    340

    8.0

    5.0

    a.c.4000

    L&N与应用部件之间

    G

    1MOPP

    240

    340

    4.0

    2.5

    a.c.1500

    应用部件与主机塑料外壳之间

    H

    1MOPP

    240

    340

    4.0

    2.5

    a.c.1500

    应用部件与脚踏开关之间

    I

    1MOPP

    240

    340

    4.0

    2.5

    a.c.1500

    应用部件与内部电路之间

    附加说明:

    1)ME设备预期用于海拔高度≤3000m的高度,电气间隙倍增系数1.14,如果最小的爬电距离小于最小的电气间隙,那么最小电气间隙值应作为最小爬电距离。

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值