Ceres优化库使用详解

Ceres优化库使用详解

主要参考文档http://ceres-solver.org/nnls_modeling.html

第一部分

对于下述的带约束的线性最小二乘问题
min ⁡ x 1 2 ∑ i ρ i ( ∥ f i ( x i 1 , … , x i k ) ∥ 2 )  s.t.  l j ≤ x j ≤ u j \begin{array}{cl}{\min _{\mathbf{x}}} & {\frac{1}{2} \sum_{i} \rho_{i}\left(\left\|f_{i}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)\right\|^{2}\right)} \\ {\text { s.t. }} & {l_{j} \leq x_{j} \leq u_{j}}\end{array} minx s.t. 21iρi(fi(xi1,,xik)2)ljxjuj
ρ i ( ∥ f i ( x i 1 , … , x i k ) ∥ 2 ) \rho_{i}\left(\left\|f_{i}\left(x_{i_{1}}, \dots, x_{i_{k}}\right)\right\|^{2}\right) ρi(fi(xi1,,xik)2)是ResidualBlock
f i ( ⋅ ) f_i(\cdot) fi()是CostFunction
[ x i 1 , . . . , x i k ] \left[x_{i_1},... , x_{i_k}\right] [xi1,...,xik]是ParameterBlock
l j 和 u j l_j和u_j ljuj是参数块的边界
ρ i \rho_i ρi是LossFunction,比如Huber核函数、Cauchy核函数、高斯核函数等
  若 ρ i ( x ) = x \rho_i(x) = x ρi(x)=x l j = − ∞ l_j = -\infty lj= u j = ∞ u_j=\infty uj=的话就得到了一个非常常见的无约束非线性最小二乘问题。
1 2 ∑ i ∥ f i ( x i 1 , . . . , x i k ) ∥ 2 . \frac{1}{2}\sum_{i} \left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2. 21ifi(xi1,...,xik)2.


例1.1:
1 2 ( 10 − x ) 2 . \frac{1}{2}(10 -x)^2. 21(10x)2.
该问题的最小值是x=10.
(1)第一步是写一个函数计算CostFunction f ( x ) = 10 − x f(x) = 10 - x f(x)=10x的值

struct CostFunctor {
   template <typename T>
   bool operator()(const T* const x, T* residual) const {
     residual[0] = T(10.0) - x[0];
     return true;
   }
};

(2)一旦我们有了计算残差函数的方法,现在就可以用它来构造一个非线性最小二乘问题,并让Ceres来进行求解。

int main(int argc, char** argv) {
  google::InitGoogleLogging(argv[0]);

  // The variable to solve for with its initial value.
  double initial_x = 5.0;
  double x = initial_x;

  // Build the problem.
  Problem problem;

  // Set up the only cost function (also known as residual). This uses
  // auto-differentiation to obtain the derivative (jacobian).
  CostFunction* cost_function =
      new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
  problem.AddResidualBlock(cost_function, NULL, &x);
  // Run the solver!
  Solver::Options options;
  options.linear_solver_type = ceres::DENSE_QR;
  options.minimizer_progress_to_stdout = true;
  Solver::Summary summary;
  Solve(options, &problem, &summary);

  std::cout << summary.BriefReport() << "\n";
  std::cout << "x : " << initial_x
            << " -> " << x << "\n";
  return 0;
}

AutoDiffCostFunction自动对CostFunctor进行求导。


除此之外还有数值求导、解析求导适应任意参数的目标函数

  • 数值求导:
struct NumericDiffCostFunctor {
  bool operator()(const double* const x, double* residual) const {
    residual[0] = 10.0 - x[0];
    return true;
  }
};
//NumericDiff
CostFunction* cost_function =
  new NumericDiffCostFunction<NumericDiffCostFunctor, ceres::CENTRAL, 1, 1>(
      new NumericDiffCostFunctor);
problem.AddResidualBlock(cost_function, NULL, &x);
  • 解析求导
class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> {
 public:
  virtual ~QuadraticCostFunction() {}
  virtual bool Evaluate(double const* const* parameters,
                        double* residuals,
                        double** jacobians) const {
    const double x = parameters[0][0];
    residuals[0] = 10 - x;

    // Compute the Jacobian if asked for.
    if (jacobians != NULL && jacobians[0] != NULL) {
      jacobians[0][0] = -1;
    }
    return true;
  }
};
//AnalyticDiff
//QuadraticCostFunction继承自SizedCostFunction,而SizedCostFunction继承自
//CostFunction,因此此语句与上述两种对CostFunction的赋值操作略有不同
CostFunction = new QuadraticCostFunction;
problem.AddResidualBlock(CostFunction,NULL,&x);

例1.2: Powell’s Function
对于变量 x = [ x 1 , x 2 , x 3 , x 4 ] x = \left[x_1, x_2, x_3, x_4 \right] x=[x1,x2,x3,x4]
最小化目标函数
1 2 ∥ F ( x ) ∥ 2 \frac{1}{2}\|F(x)\|^2 21F(x)2
其中
f 1 ( x ) = x 1 + 10 x 2 f 2 ( x ) = 5 ( x 3 − x 4 ) f 3 ( x ) = ( x 2 − 2 x 3 ) 2 f 4 ( x ) = 10 ( x 1 − x 4 ) 2 F ( x ) = [ f 1 ( x ) ,   f 2 ( x ) ,   f 3 ( x ) ,   f 4 ( x ) ] \begin{aligned} f_1(x) &= x_1 + 10x_2 \\ f_2(x) &= \sqrt{5} (x_3 - x_4)\\ f_3(x) &= (x_2 - 2x_3)^2\\ f_4(x) &= \sqrt{10} (x_1 - x_4)^2\\ F(x) &= \left[f_1(x),\ f_2(x),\ f_3(x),\ f_4(x) \right]\\ \end{aligned} f1(x)f2(x)f3(x)f4(x)F(x)=x1+10x2=5 (x3x4)=(x22x3)2=10 (x1x4)2=[f1(x), f2(x), f3(x), f4(x)]
(1)第一步就是定义四个函数求解目标函数每一项的值。下面是F4

struct F4 {
  template <typename T>
  bool operator()(const T* const x1, const T* const x4, T* residual) const {
    residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
    return true;
  }
};

同样的可以定义F1,F2,F3.
(2)构造优化问题

double x1 =  3.0; double x2 = -1.0; double x3 =  0.0; double x4 = 1.0;

Problem problem;

// Add residual terms to the problem using the using the autodiff
// wrapper to get the derivatives automatically.
problem.AddResidualBlock(
  new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x1, &x2);
problem.AddResidualBlock(
  new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x3, &x4);
problem.AddResidualBlock(
  new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x2, &x3)
problem.AddResidualBlock(
  new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x1, &x4);

例子1.3: Curve Fitting
函数形式:
y = e m x + c . y = e^{mx + c}. y=emx+c.
(1)生成数据:
比如设置采样函数中的m=0.3,c=0.1 并添加方差 σ \sigma σ=0.2的噪声,生成采样数据。
(2)构造代价函数计算残差

struct ExponentialResidual {
  ExponentialResidual(double x, double y)
      : x_(x), y_(y) {}

  template <typename T>
  bool operator()(const T* const m, const T* const c, T* residual) const {
    residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]);
    return true;
  }

 private:
  // Observations for a sample.
  const double x_;
  const double y_;
};

(3)对于2n对采样数据(x,y)称之为观测数据,每一对数据都会创建一个代价函数。

double m = 0.0;
double c = 0.0;

Problem problem;
for (int i = 0; i < kNumObservations; ++i) {
  CostFunction* cost_function =
       new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
           new ExponentialResidual(data[2 * i], data[2 * i + 1]));
  problem.AddResidualBlock(cost_function, NULL, &m, &c);
}

曲线拟合效果
Alt

  • Robust Curve Fitting
    假如上面的采样数据中包含一些异常值,不服从噪声模型。那么数据拟合出的效果就会偏离groundtruth,效果如下所示
    Alt
    因此,添加鲁棒核函数
    将上面程序中
problem.AddResidualBlock(cost_function, NULL , &m, &c);

替换为

problem.AddResidualBlock(cost_function, new CauchyLoss(0.5) , &m, &c);

添加柯西核函数的拟合效果如下
Alt
例1.4: Bundle Adjustment
下面是一个求解更加实际的BA优化问题。
(1)第一步构造代价函数

struct SnavelyReprojectionError {
  SnavelyReprojectionError(double observed_x, double observed_y)
      : observed_x(observed_x), observed_y(observed_y) {}

  template <typename T>
  bool operator()(const T* const camera,
                  const T* const point,
                  T* residuals) const {
    // camera[0,1,2] are the angle-axis rotation.
    T p[3];
    ceres::AngleAxisRotatePoint(camera, point, p);
    // camera[3,4,5] are the translation.
    p[0] += camera[3]; p[1] += camera[4]; p[2] += camera[5];

    // Compute the center of distortion. The sign change comes from
    // the camera model that Noah Snavely's Bundler assumes, whereby
    // the camera coordinate system has a negative z axis.
    T xp = - p[0] / p[2];
    T yp = - p[1] / p[2];

    // Apply second and fourth order radial distortion.
    const T& l1 = camera[7];
    const T& l2 = camera[8];
    T r2 = xp*xp + yp*yp;
    T distortion = T(1.0) + r2  * (l1 + l2  * r2);

    // Compute final projected point position.
    const T& focal = camera[6];
    T predicted_x = focal * distortion * xp;
    T predicted_y = focal * distortion * yp;

    // The error is the difference between the predicted and observed position.
    residuals[0] = predicted_x - T(observed_x);
    residuals[1] = predicted_y - T(observed_y);
    return true;
  }

   // Factory to hide the construction of the CostFunction object from
   // the client code.
   static ceres::CostFunction* Create(const double observed_x,
                                      const double observed_y) {
     return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
                 new SnavelyReprojectionError(observed_x, observed_y)));
   }

  double observed_x;
  double observed_y;
};

其中observed_x,observed_y是观测数据(3D点在像素平面的投影),camera是相机的位姿和部分内参数据,point是3D点。
(2)构造BA优化问题

ceres::Problem problem;
for (int i = 0; i < bal_problem.num_observations(); ++i) {
  ceres::CostFunction* cost_function =
      SnavelyReprojectionError::Create(
           bal_problem.observations()[2 * i + 0],
           bal_problem.observations()[2 * i + 1]);
  problem.AddResidualBlock(cost_function,
                           NULL /* squared loss */,
                           bal_problem.mutable_camera_for_observation(i),
                           bal_problem.mutable_point_for_observation(i));
}

(3)设置参数进行优化求解

ceres::Solver::Options options;
options.linear_solver_type = ceres::DENSE_SCHUR; //稠密舒尔补求解
options.minimizer_progress_to_stdout = true;
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
std::cout << summary.FullReport() << "\n";

第二部分

  • CostFunction
        CostFunction函数主要负责计算目标函数中的每一项的代价 f i ( x 1 , . . . , x k ) f_i\left(x_{1},...,x_{k}\right) fi(x1,...,xk)以及雅克比矩阵 J i J_i Ji
    其中
    J i = ∂ ∂ x i f ( x 1 , . . . , x k ) ∀ i ∈ { 1 , … , k } J_i = \frac{\partial}{\partial x_i} f(x_1, ..., x_k) \quad \forall i \in \{1, \ldots, k\} Ji=xif(x1,...,xk)i{1,,k}

CostFunction类

class CostFunction {
 public:
  virtual bool Evaluate(double const* const* parameters,
                        double* residuals,
                        double** jacobians) = 0;
  const vector<int32>& parameter_block_sizes();
  int num_residuals() const;

 protected:
  vector<int32>* mutable_parameter_block_sizes();
  void set_num_residuals(int num_residuals);
};

CostFunction类里面的Evaluate函数,计算残差向量和Jocobian矩阵

bool CostFunction::Evaluate(double const *const *parameters, double *residuals, double **jacobians)

参数说明:
(1)parameters是大小为CostFunction::parameter_block_sizes_.size()的数组,parameters[i]是大小为parameter_block_sizes_[i]的数组,其中对应CostFunction所依赖的第i个参数块。
(2)residuals是一个大小为num_residuals_的数组
(3)jacobians是一个大小为CostFunction::parameter_block_sizes_.size()的数组。jacobians[i]是一个大小为num_residuals × \times ×parameter_block_sizes_[i]的行主数组。

  • SizedCostFunction
    如果事先知道残差的维数以及各个参数块的维数,那么这些值可以指定为模板参数,在SizeCostFunction中使用者只需要去实现方法 CostFunction::Evaluate()即可。
template<int kNumResiduals,
         int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
         int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
class SizedCostFunction : public CostFunction {
 public:
  virtual bool Evaluate(double const* const* parameters,
                        double* residuals,
                        double** jacobians) const = 0;
};
  • AutoDiffCostFunction
    定义一个CostFunction或者一个SizedCostFunction比较繁琐和容易出错,特别是当计算导数的时候。因此ceres提供了自动求导的接口。
template <typename CostFunctor,
       int kNumResiduals,  // Number of residuals, or ceres::DYNAMIC.
       int N0,       // Number of parameters in block 0.
       int N1 = 0,   // Number of parameters in block 1.
       int N2 = 0,   // Number of parameters in block 2.
       int N3 = 0,   // Number of parameters in block 3.
       int N4 = 0,   // Number of parameters in block 4.
       int N5 = 0,   // Number of parameters in block 5.
       int N6 = 0,   // Number of parameters in block 6.
       int N7 = 0,   // Number of parameters in block 7.
       int N8 = 0,   // Number of parameters in block 8.
       int N9 = 0>   // Number of parameters in block 9.
class AutoDiffCostFunction : public
SizedCostFunction<kNumResiduals, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> {
 public:
  explicit AutoDiffCostFunction(CostFunctor* functor);
  // Ignore the template parameter kNumResiduals and use
  // num_residuals instead.
  AutoDiffCostFunction(CostFunctor* functor, int num_residuals);
};

对于BA问题,重投影误差为2维,因此事先设定kNumResiduals=2,参数块N0=7为相机姿态(旋转四元数和平移),参数块N1=3(为三维特征点的维数)
例2.1:
目标函数:
1 2 ∣ ∣ ( k − x ⊤ y ) ∣ ∣ 2 \frac{1}{2}||(k - x^\top y)||^2 21(kxy)2
其中x,y分别是二维向量
(1)第一步

class MyScalarCostFunctor {
  MyScalarCostFunctor(double k): k_(k) {}

  template <typename T>
  bool operator()(const T* const x , const T* const y, T* e) const {
    e[0] = k_ - x[0] * y[0] - x[1] * y[1];
    return true;
  }

 private:
 double k_;
};

误差的平方由优化框架隐式完成。
(2)第二步

CostFunction* cost_function
    = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
        new MyScalarCostFunctor(1.0));              ^  ^  ^
                                                    |  |  |
                        Dimension of residual ------+  |  |
                        Dimension of x ----------------+  |
                        Dimension of y -------------------+

AutoDiffCostFunction也支持自动确定残差维度

CostFunction* cost_function
    = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
        new CostFunctorWithDynamicNumResiduals(1.0),   ^     ^  ^
        runtime_number_of_residuals); <----+           |     |  |
                                           |           |     |  |
                                           |           |     |  |
          Actual number of residuals ------+           |     |  |
          Indicate dynamic number of residuals --------+     |  |
          Dimension of x ------------------------------------+  |
          Dimension of y ---------------------------------------+

注 意 : \color{red}注意:
初学使用AutoDiffCostFunction时,一个常见的错误是错误地设置了大小。特别是,有一种倾向是将模板参数设置为(残差尺寸、参数数量),而不是为每个参数块传递一个尺寸参数。在上面的例子中,若<MyScalarCostFunction, 1,2 >,则它缺少最后一个模板参数2。

第三部分

LossFunction
常见的鲁棒核函数
Alt

  • TrivialLoss
    ρ ( s ) = s \rho(s) = s ρ(s)=s

  • HuberLoss
    ρ ( s ) = { s s ≤ 1 2 s − 1 s > 1 \rho(s)=\left\{\begin{array}{ll}{s} & {s \leq 1} \\ {2 \sqrt{s}-1} & {s>1}\end{array}\right. ρ(s)={s2s 1s1s>1

  • SoftLOneLoss
    ρ ( s ) = 2 ( 1 + s − 1 ) \rho(s) = 2 (\sqrt{1+s} - 1) ρ(s)=2(1+s 1)

  • CauchyLoss
    ρ ( s ) = log ⁡ ( 1 + s ) \rho(s) = \log(1 + s) ρ(s)=log(1+s)

  • ArctanLoss
    ρ ( s ) = arctan ⁡ ( s ) \rho(s) = \arctan(s) ρ(s)=arctan(s)

  • TolerantLoss
    ρ ( s , a , b ) = b log ⁡ ( 1 + e ( s − a ) / b ) − b log ⁡ ( 1 + e − a / b ) \rho(s,a,b) = b \log(1 + e^{(s - a) / b}) - b \log(1 + e^{-a / b}) ρ(s,a,b)=blog(1+e(sa)/b)blog(1+ea/b)

第四部分

LocalParameterization

class LocalParameterization {
 public:
  virtual ~LocalParameterization() {}
  virtual bool Plus(const double* x,
                    const double* delta,
                    double* x_plus_delta) const = 0;
  virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
  virtual bool MultiplyByJacobian(const double* x,
                                  const int num_rows,
                                  const double* global_matrix,
                                  double* local_matrix) const;
  virtual int GlobalSize() const = 0;
  virtual int LocalSize() const = 0;
};

这部分的讲解参考博客 https://blog.csdn.net/hzwwpgmwy/article/details/86490556
https://blog.csdn.net/sanshixionglueluelue/article/details/81037791
简单的讲,对于位姿优化的过程中由于旋转的更新不能直接加,因此需要重新定义加法,就需要用到这个参数化的过程。其中GlobalSize表示的是参数的维度比如相机的pose是个7维的,而LocalSize则表示参数实际表示的维度是6维的(因为4维的四元数表示3自由度的旋转)。

  • 5
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Ceres是一个开源的C++,用于解决非线性最小二乘问题。它提供了一套先进的优化算法和工具,可用于求解各种各样的优化问题,比如相机标定、图像配准、立体视觉、SLAM等。 首先,为了开始使用Ceres,我们需要在计算机上安装它。对于Windows用户,可以从Ceres的官方网站上下载预编译好的二进制文件,并将其添加到系统环境变量中。对于Linux或Mac用户,可以通过命令行安装,并使用包管理器(如apt-get或brew)来安装Ceres。 安装完成后,我们可以在代码中包含Ceres的头文件,并链接相应的文件,以便在程序中使用Ceres的功能。接下来,我们需要定义一个优化问题,并添加待优化的参数、残差函数和约束条件。 在Ceres中,我们可以通过定义一个继承自ceres::CostFunction的类来表示残差函数。同时,在优化问题中可以使用ceres::Problem类来添加和管理这些残差函数。通过构建、配置和解决这个问题,Ceres可以自动寻找最优的参数值,使得所有残差函数的总和最小。 值得一提的是,在使用Ceres时,我们需要定义自己的残差函数,并提供优化问题的初始参数。同时,也可以选择合适的优化算法和迭代次数,以及监控优化过程的输出信息。 总之,Ceres是一个功能强大的开源优化使用它可以很方便地解决非线性最小二乘问题。通过正确安装和使用Ceres,我们可以有效地求解各种优化问题,并获得最佳的优化结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值