一阶低通滤波器与高通滤波器的使用

本文介绍了低通和高通一阶滤波器的工作原理及其传递函数,通过差分方程详细阐述了滤波器的设计过程,并给出了Simulink仿真的实现方法。

1. 一阶低通滤波器

在这里插入图片描述
其传递函数为: Y U = 1 1 + R C ⋅ S \frac{Y}{U}=\frac{1}{1+R C \cdot S} UY=1+RCS1
其中,滤波器截止频率为 ω c = 1 R C \omega_c=\frac{1}{R C} ωc=RC1,由 ω = 2 π f \omega = 2\pi f ω=2πf知, f c u t = 1 2 π R C f_{cut}=\frac{1}{2\pi RC} fcut=2πRC1

对其进行差分,可得: y ( k ) = ( 1 − Δ t R C ) y ( k − 1 ) + Δ t R C x ( k ) y(k)=\left(1-\frac{\Delta t}{R C}\right) y(k-1)+\frac{\Delta t}{R C} x(k) y(k)=(1RCΔt)y(k1)+RCΔtx(k)
y[i] = α * x[i] + (1-α) * y[i-1],其中当α=1时无滤波效果,当α>0.5时在少量上次滤波值的基础上增加相对多量的本次采样值。

Bode图绘制

% 若想滤掉10KHz以上频率,则可令fcut =1k
fcut =1000;
RC=1/2/pi/fcut;
y1 = tf(1,[RC,1])
bode(y1)

在这里插入图片描述

2. 一阶高通滤波器

低通滤波器的R和C位置互换即可得到一阶高通滤波器电路模型。

其传递函数为:
Y U = 1 1 + 1 R C ⋅ S = R C ⋅ S 1 + R C ⋅ S \frac{Y}{U}=\frac{1}{1+\frac{1}{R C \cdot S}}=\frac{RC\cdot S}{1+RC\cdot S} UY=1+RCS11=1+RCSRCS
对其进行差分,可得:
y ( k ) = R C R C + T y ( k − 1 ) + R C R C + T [ x ( k ) − x ( k − 1 ) ] y(k)=\frac{R C}{R C+T} y(k-1)+\frac{R C}{R C+T}[x(k)-x(k-1)] y(k)=RC+TRCy(k1)+RC+TRC[x(k)x(k1)]
y[i] = α * y[i-1] + α * (x[i] - x[i-1]),其中当α=1时无滤波效果,当α<1时不断弱化上次滤波的值,使采样间的差值相对强化,也就是在不断变弱上次滤波值的基础上增加本次采样值与上次采样值之间的变化。

Bode图绘制

fcut =0.5;
RC=1/2/pi/fcut;
y1 = tf([RC,0],[RC,1])
bode(y1)

在这里插入图片描述

3. 互补滤波器

结合一阶低通滤波器和一阶高通滤波器的差分方程可得:
y ( k ) = R C R C + T [ y ( k − 1 ) + Δ x ( k ) ] + T T + R C x ( k ) y(k)=\frac{R C}{R C+T}\left[y(k-1)+\Delta x(k)\right]+\frac{T}{T+R C} x(k) y(k)=RC+TRC[y(k1)+Δx(k)]+T+RCTx(k)

4. Simulink仿真

在这里插入图片描述

在这里插入图片描述


参考文献:

  • https://blog.csdn.net/luoshi006/article/details/51459884
  • https://blog.csdn.net/qq_27158179/article/details/82661297
  • https://blog.csdn.net/qq_38288618/article/details/77049703
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值