重温LuGre摩擦力模型

本文详细介绍了LuGre摩擦模型,对比了它与Dahl模型的区别,强调了速度相关函数g(v)和粘滞摩擦力项f(v)在模型中的作用。 LuGre模型考虑了速度和微位移对摩擦力的影响,其中f(v)与宏观位移成正比,g(v)描述了库伦摩擦和Stribeck效应。在恒速情况下,稳态摩擦力Fss(v)由g(v)和f(v)共同决定。此外,文章还探讨了Stribeck速度和指数α如何影响摩擦力的衰减曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
式中, v v v是接触面的相对速度, z z z是内摩擦状态, F F F是预测的摩擦力。

与Dahl模型不同的是,LuGre模型有一个与速度相关的函数 g ( v ) g(v) g(v),而不是一个常数,一个额外的与微位移相关的阻尼系数 σ 1 \sigma_1 σ1,以及与宏观位移相关的粘滞摩擦力项 f ( v ) f(v) f(v)

其中状态 z z z类似乎Dahl模型中的应变,可解释为平均鬓毛挠度, σ 0 \sigma_0 σ0为鬓毛刚度, σ 1 \sigma_1 σ1为鬓毛阻尼。

与宏观位移相关的粘滞摩擦力项 f ( v ) f(v) f(v)被建模为:
f ( v ) = σ 2 v f(v)=\sigma_2 v f(v)=σ2v

对于恒速情况,稳态摩擦力计算如下:
F s s ( v ) = g ( v ) s g n ( v ) + f ( v ) F_{ss}(v)=g(v)sgn(v)+f(v) Fss(v)=g(v)sgn(v)+f(v)

其中 g ( v ) g(v) g(v)为描述库伦摩擦力和Stribeck效应的函数,可被建模为:
在这里插入图片描述
式中, F s F_s Fs为静摩擦力, F c F_c Fc为库伦摩擦力, F c ≤ g ( v ) ≤ F s F_c≤g(v)≤F_s Fcg(v)Fs,参数 v s v_s vs决定了 g ( v ) g(v) g(v)接近 F c F_c Fc的速度,指数 α \alpha α是一个经验值,与减速器类型有关,大约在0.5到2之间。

Stribeck速度与指数 α \alpha α对摩擦力的影响见下图,由此可见:Stribeck速度越高,速度端受Stribeck效应的影响范围越广;指数α影响衰减曲线的形状,衰减斜率与速度有关。
在这里插入图片描述


参考文献:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值