RBM受限玻尔兹曼机

受限玻尔兹曼机

玻尔兹曼机是一种存在隐节点的无向图模型。在图模型中最简单的是朴素贝叶斯模型(朴素贝叶斯假设),引入单个隐变量后,发展出了 GMM,如果单个隐变量变成序列的隐变量,就得到了状态空间模型(引入齐次马尔可夫假设和观测独立假设就有HMM,Kalman Filter,Particle Filter),为了引入观测变量之间的关联,引入了一种最大熵模型-MEMM,为了克服 MEMM 中的局域问题,又引入了 CRF,CRF 是一个无向图,其中,破坏了齐次马尔可夫假设,如果隐变量是一个链式结构,那么又叫线性链 CRF。

在无向图的基础上,引入隐变量得到了玻尔兹曼机,这个图模型的概率密度函数是一个指数族分布。对隐变量和观测变量作出一定的限制,就得到了受限玻尔兹曼机(RBM)。

我们看到,不同的概率图模型对下面几个特点作出假设:

  1. 方向-边的性质
  2. 离散/连续/混合-点的性质
  3. 条件独立性-边的性质
  4. 隐变量-节点的性质
  5. 指数族-结构特点

将观测变量和隐变量分别记为 v , h , h = { h 1 , ⋯   , h m } , v = { v 1 , ⋯   , v n } v,h,h=\{h_1,\cdots,h_m\},v=\{v_1,\cdots,v_n\} v,h,h={h1,,hm},v={v1,,vn}。我们知道,无向图根据最大团的分解,可以写为玻尔兹曼分布的形式 p ( x ) = 1 Z ∏ i = 1 K ψ i ( x c i ) = 1 Z exp ⁡ ( − ∑ i = 1 K E ( x c i ) ) p(x)=\frac{1}{Z}\prod\limits_{i=1}^K\psi_i(x_{ci})=\frac{1}{Z}\exp(-\sum\limits_{i=1}^KE(x_{ci})) p(x)=Z1i=1Kψi(xci)=Z1exp(i=1KE(xci)),这也是一个指数族分布。

一个玻尔兹曼机存在一系列的问题,在其推断任务中,想要精确推断,是无法进行的,想要近似推断,计算量过大。为了解决这个问题,一种简化的玻尔兹曼机-受限玻尔兹曼机作出了假设,所有隐变量内部以及观测变量内部没有连接,只在隐变量和观测变量之间有连接,这样一来:
p ( x ) = p ( h , v ) = 1 Z exp ⁡ ( − E ( v , h ) ) p(x)=p(h,v)=\frac{1}{Z}\exp(-E(v,h)) p(x)=p(h,v)=Z1exp(E(v,h))
其中能量函数 E ( v , h ) E(v,h) E(v,h) 可以写出三个部分,包括与节点集合相关的两项以及与边 w w w 相关的一项,记为:
E ( v , h ) = − ( h T w v + α T v + β T h ) E(v,h)=-(h^Twv+\alpha^T v+\beta^T h) E(v,h)=(hTwv+αTv+βTh)
所以:
p ( x ) = 1 Z exp ⁡ ( h T w v ) exp ⁡ ( α T v ) exp ⁡ ( β T h ) = 1 Z ∏ i = 1 m ∏ j = 1 n exp ⁡ ( h i w i j v j ) ∏ j = 1 n exp ⁡ ( α j v j ) ∏ i = 1 m exp ⁡ ( β i h i ) p(x)=\frac{1}{Z}\exp(h^Twv)\exp(\alpha^T v)\exp(\beta^T h)=\frac{1}{Z}\prod_{i=1}^m\prod_{j=1}^n\exp(h_iw_{ij}v_j)\prod_{j=1}^n\exp(\alpha_jv_j)\prod_{i=1}^m\exp(\beta_ih_i) p(x)=Z1exp(hTwv)exp(αTv)exp(βTh)=Z1i=1mj=1nexp(hiwijvj)j=1nexp(αjvj)i=1mexp(βihi)
上面这个式子也和 RBM 的因子图一一对应。

推断

推断任务包括求后验概率 $ p(v|h),p(h|v)$ 以及求边缘概率 p ( v ) p(v) p(v)

p ( h ∣ v ) p(h|v) p(hv)

对于一个无向图,满足局域的 Markov 性质,即 p ( h 1 ∣ h − { h 1 } , v ) = p ( h 1 ∣ N e i g h b o u r ( h 1 ) ) = p ( h 1 ∣ v ) p(h_1|h-\{h_1\},v)=p(h_1|Neighbour(h_1))=p(h_1|v) p(h1h{h1},v)=p(h1Neighbour(h1))=p(h1v)。我们可以得到:
p ( h ∣ v ) = ∏ i = 1 m p ( h i ∣ v ) p(h|v)=\prod_{i=1}^mp(h_i|v) p(hv)=i=1mp(hiv)
考虑 Binary RBM,所有的隐变量只有两个取值 0 , 1 0,1 0,1
p ( h l = 1 ∣ v ) = p ( h l = 1 , h − l , v ) p ( h − l , v ) = p ( h l = 1 , h − l , v ) p ( h l = 1 , h − l , v ) + p ( h l = 0 , h − l , v ) p(h_l=1|v)=\frac{p(h_l=1,h_{-l},v)}{p(h_{-l},v)}=\frac{p(h_l=1,h_{-l},v)}{p(h_l=1,h_{-l},v)+p(h_l=0,h_{-l},v)} p(hl=1v)=p(hl,v)p(hl=1,hl,v)=p(hl=1,hl,v)+p(hl=0,hl,v)p(hl=1,hl,v)
将能量函数写成和 l l l 相关或不相关的两项:
E ( v , h ) = − ( ∑ i = 1 , i ≠ l m ∑ j = 1 n h i w i j v j + h l ∑ j = 1 n w l j v j + ∑ j = 1 n α j v j + ∑ i = 1 , i ≠ l m β i h i + β l h l ) E(v,h)=-(\sum\limits_{i=1,i\ne l}^m\sum\limits_{j=1}^nh_iw_{ij}v_j+h_l\sum\limits_{j=1}^nw_{lj}v_j+\sum\limits_{j=1}^n\alpha_j v_j+\sum\limits_{i=1,i\ne l}^m\beta_ih_i+\beta_lh_l) E(v,h)=(i=1,i=lmj=1nhiwijvj+hlj=1nwljvj+j=1nαjvj+i=1,i=lmβihi+βlhl)
定义: h l H l ( v ) = h l ∑ j = 1 n w l j v j + β l h l , H ‾ ( h − l , v ) = ∑ i = 1 , i ≠ l m ∑ j = 1 n h i w i j v j + ∑ j = 1 n α j v j + ∑ i = 1 , i ≠ l m β i h i h_lH_l(v)=h_l\sum\limits_{j=1}^nw_{lj}v_j+\beta_lh_l,\overline{H}(h_{-l},v)=\sum\limits_{i=1,i\ne l}^m\sum\limits_{j=1}^nh_iw_{ij}v_j+\sum\limits_{j=1}^n\alpha_j v_j+\sum\limits_{i=1,i\ne l}^m\beta_ih_i hlHl(v)=hlj=1nwljvj+βlhl,H(hl,v)=i=1,i=lmj=1nhiwijvj+j=1nαjvj+i=1,i=lmβihi

代入,有:
p ( h l = 1 ∣ v ) = exp ⁡ ( H l ( v ) + H ‾ ( h − l , v ) ) exp ⁡ ( H l ( v ) + H ‾ ( h − l , v ) ) + exp ⁡ ( H ‾ ( h − l , v ) ) = 1 1 + exp ⁡ ( − H l ( v ) ) = σ ( H l ( v ) ) p(h_l=1|v)=\frac{\exp(H_l(v)+\overline{H}(h_{-l},v))}{\exp(H_l(v)+\overline{H}(h_{-l},v))+\exp(\overline{H}(h_{-l},v))}=\frac{1}{1+\exp(-H_l(v))}=\sigma(H_l(v)) p(hl=1v)=exp(Hl(v)+H(hl,v))+exp(H(hl,v))exp(Hl(v)+H(hl,v))=1+exp(Hl(v))1=σ(Hl(v))
于是就得到了后验概率。对于 v v v 的后验是对称的,所以类似的可以求解。

p ( v ) p(v) p(v)

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲p(v)&=\sum\limi…

其中, log ⁡ ( 1 + exp ⁡ ( x ) ) \log(1+\exp(x)) log(1+exp(x)) 叫做 Softplus 函数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值