连续传递函数
严格建模:指数形式
根据拉普拉斯变换的性质,
[ f ( t ) ↔ F ( s ) ] ⇔ [ f ( t − t 0 ) ↔ e − s t 0 F ( s ) ] \left[ {f\left( t \right) \leftrightarrow F\left( s \right)} \right] \Leftrightarrow \left[ {f\left( {t - {t_0}} \right) \leftrightarrow {e^{ - s{t_0}}}F\left( s \right)} \right] [f(t)↔F(s)]⇔[f(t−t0)↔e−st0F(s)]
因此,在连续传递函数中,可以用下式对延时环节进行建模,
H ( s ) = e − s t 0 H\left( s \right) = {e^{ - s{t_0}}} H(s)=e−st0
以 t 0 = 0.001 t_0=0.001 t0=0.001为例,绘制波特图如下所示:
对数坐标系(幅值、相位) | 自然坐标系(相位响应) |
---|---|
![]() |
![]() |
对应Matlab代码如下:
clc; clear; close all;T = 0.001;w = linspace(1,6280,6280);
% 绘制对数坐标系波特图
s = tf("s");Ca = exp(-s*T);figure;bode(Ca, w);grid on;xlim([1,6280]);
% 绘制相位响应(线性坐标系)
[mag, phase, wout] = bode(Ca, w);figure;plot(wout,squeeze(phase));
xlabel('Frequency (rad/s)');ylabel('Phase (degrees)');
title('Phase Response (Linear Scale)');axis([1,6280,-360,0]);grid on;
近似建模:Pade近似
对于不允许使用指数表达式的场合,采用Pade近似将指数形式表示为分式形式,不同阶次的计算结果如下。Pade近似的原理介绍可以参考Pade近似,原理与Matlab实现。
{ 原始函数 : f ( x ) = e x [ 1 , 1 ] 近似 : − x + 2 x − 2 [ 2 , 2 ] 近似 : + x 2 + 6 x + 12 x 2 − 6 x + 12 [ 3 , 3 ] 近似 : − x 3 + 12 x 2 + 60 x + 120 x 3 − 12 x 2 + 60 x − 120 → { 延时传函 : H ( s ) = e − s t 0 [ 1 , 1 ] 近似 : − t 0 s + 2 t 0 s + 2