现代控制(3)-根轨迹

本文探讨了系统动态过程与闭环零点、极点的关系,介绍了根轨迹的概念,它是通过开环传递函数分析闭环系统稳定性的重要工具。根轨迹分析涉及幅值条件和相角条件,以及七条关键法则。增加开环零点可以改善系统稳定性,而开环极点右移则可能导致系统性能下降。此外,文章还提及PID控制器在系统校正中的应用。
摘要由CSDN通过智能技术生成

基本概念

  1. 系统的动态过程与系统的闭环零点和极点在S平面上的分布位置有关。
  2. 根轨迹:当开环系统的一个或多个参数发生变化时,根据系统的开环零、极点,绘制闭环特征根变化的轨迹,用来分析系统稳定性。
  3. 开环传函(k未知)——>闭环传函——>特征方程——>闭环极点(随k变化)
  4. 两个条件:幅值条件+相角条件

在这里插入图片描述

七条法则:

  1. 起极,终零

  2. 分支数:n (m/n)

  3. 实轴上,右侧零极点之和为奇数,则为根轨迹

  4. 渐近线:(n-m)条
    在这里插入图片描述

  5. 分离点d
    在这里插入图片描述

  6. 虚轴交点:闭环特征方程,s=jw

  7. 起始角
    在这里插入图片描述

2.性能分析

增加开环零点——左移——稳定。
开环极点——右移——不好

3.校正

例子1:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.PID

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值