常用输入信号及其拉氏变换

最近复习到自动控制理论,对各种信号和其拉氏变换还不太熟悉,推导一下加深印象。

 在描述一个系统或环节运动规律时,微分方程是其数学模型的最基本形式,然而对于一个二阶以上的系统,其微分方程难以得到解,为了便于研究,引入拉普拉斯变换将时域内的微分方程变成S域中的传递函数进行求解。

1.拉普拉斯变换

 首先给出拉普拉斯变换定义式 L [ r ( t ) ] = ∫ 0 ∞ r ( t ) e − s t d t = R ( s ) L{[r(t)}]=\int_{0}^{\infty}r(t)e^{-st}dt=R(s) L[r(t)]=0r(t)estdt=R(s)
其中 r ( t ) r(t) r(t)是关于时间的函数,可以是输入信号。

性质

拉氏变换相对于微分方程的优越性在于其对微分方程中导数和积分量的变换

(1).微分性质:

∫ 0 ∞ r ′ ( t ) e − s t d t = ∫ 0 ∞ e − s t d [ r ( t ) ] = e − s t r ( t ) ∣ 0 ∞ + s ∫ 0 ∞ r ( t ) e − s t d t = s R ( s ) − r ( 0 ) \int_{0}^{\infty}r^{'}(t)e^{-st}dt=\int_{0}^{\infty}e^{-st}d[r(t)]=e^{-st}r(t)|_{0}^{\infty}+s\int_{0}^{\infty}r(t)e^{-st}dt=sR(s)-r(0) 0r(t)estdt=0estd[r(t)]=estr(t)0+s0r(t)estdt=sR(s)r(0)
由于在自动控制原理中传递函数均为0初始条件,因此最终得到 L [ r ′ ( t ) ] = s R ( s ) L[r^{'}(t)]=sR(s) L[r(t)]=sR(s)

(2).积分性质:

∫ 0 ∞ ( ∫ r ( t ) ) e − s t d t = − 1 s ∫ 0 ∞ ( ∫ r ( t ) ) d ( e − s t ) = − 1 s r ( t ) e − s t ∣ 0 ∞ + ∫ 0 ∞ r ( t ) e − s t d t = R ( s ) s + r ( 0 ) s \int_{0}^{\infty}(\int{r(t)})e^{-st}dt=-\frac{1}{s}\int_{0}^{\infty}(\int{r(t)})d(e^{-st})=-\frac{1}{s}r(t)e^{-st}|_{0}^{\infty}+\int_{0}^{\infty}r(t)e^{-st}dt=\frac{R(s)}{s}+\frac{r(0)}{s} 0(r(t))estdt=s10(r(t))d(est)=s1r(t)est0+0r(t)estdt=sR(s)+sr(0)
由于在自动控制原理中传递函数均为0初始条件,因此最终得到 L [ ∫ r ( t ) ] = R ( s ) s L[\int{r(t)}]=\frac{R(s)}{s} L[r(t)]=sR(s)
  有了上述两个定理后,就可以对微分方程进行零初始条件下的拉氏变换,进行S域上的研究。

(3).位移性质:

L [ r ( t − τ ) ] = ∫ 0 ∞ r ( t − τ ) e − s t d t = ∫ τ ∞ r ( t − τ ) e − s t d t L[r(t-\tau)]=\int_{0}^{\infty}r(t-\tau)e^{-st}dt=\int_{\tau}^{\infty}r(t-\tau)e^{-st}dt L[r(tτ)]=0r(tτ)estdt=τr(tτ)estdt
L [ r ( t ) ] = ∫ 0 ∞ r ( t ) e − s t d t = R ( s ) L[r(t)]=\int_{0}^{\infty}r(t)e^{-st}dt=R(s) L[r(t)]=0r(t)estdt=R(s)
∫ τ ∞ r ( t − τ ) e − s t d t = e − s τ ∫ τ ∞ r ( t − τ ) e − s ( t − τ ) d ( t − τ ) = e − s τ ∫ 0 ∞ r ( u ) e − s u d ( u ) = e − s τ R ( s ) \int_{\tau}^{\infty}r(t-\tau)e^{-st}dt=e^{-s\tau}\int_{\tau}^{\infty}r(t-\tau)e^{-s(t-\tau)}d(t-\tau)=e^{-s\tau}\int_{0}^{\infty}r(u)e^{-su}d(u)=e^{-s\tau}R(s) τr(tτ)estdt=esττr(tτ)es(tτ)d(tτ)=esτ0r(u)esud(u)=esτR(s)
注意性质的正反使用。

2.常用输入信号

首先进行一个归纳:

输入信号拉氏变换
单位脉冲信号 δ ( t ) \delta(t) δ(t)1
单位阶跃信号 1 ( t ) 1(t) 1(t) 1 s \frac{1}{s} s1
单位速度信号 1 s 2 \frac{1}{s^2} s21
单位加速度信号 1 s 3 \frac{1}{s^3} s31
正弦信号 w s 2 + w 2 \frac{w}{s^2+w^2} s2+w2w
(1)单位脉冲信号 δ ( t ) \delta(t) δ(t)

δ ( t ) = { ∞ t = 0 0 t ≠ 0 \delta(t)=\begin{cases} \infty & t=0 \\ 0 & t\neq0 \\ \end{cases} δ(t)={0t=0t=0
为了便于积分,也可写作下式:
δ ( t ) = { lim ⁡ ε → 0 1 ε t = 0 0 t ≠ 0 \delta(t)=\begin{cases} \lim\limits_{\varepsilon\rightarrow0}\frac{1}{\varepsilon} & t=0 \\ 0 & t\neq0 \\ \end{cases} δ(t)={ε0limε10t=0t=0
对其进行拉氏变换:
L [ δ ( t ) ] = ∫ 0 ∞ δ ( t ) e − s t d t = lim ⁡ ε → 0 ∫ 0 ε 1 ε e − s t d t = lim ⁡ ε → 0 ∫ 0 ε − 1 ε s d ( e − s t ) = lim ⁡ ε → 0 − 1 ε s e − s t ∣ 0 ε = lim ⁡ ε → 0 1 ε s ( 1 − e − ε s ) L[\delta(t)]=\int_{0}^{\infty}\delta(t)e^{-st}dt= \lim\limits_{\varepsilon\rightarrow0}\int_{0}^{\varepsilon}\frac{1}{\varepsilon}e^{-st}dt=\lim\limits_{\varepsilon\rightarrow0}\int_{0}^{\varepsilon}-\frac{1}{\varepsilon{}s}d(e^{-st})=\lim\limits_{\varepsilon\rightarrow0}{-\frac{1}{\varepsilon{s}}e^{-st}|_{0}^{\varepsilon}}=\lim\limits_{\varepsilon\rightarrow0}{\frac{1}{\varepsilon{s}}(1-e^{-\varepsilon{s}})} L[δ(t)]=0δ(t)estdt=ε0lim0εε1estdt=ε0lim0εεs1d(est)=ε0limεs1est0ε=ε0limεs1(1eεs)
e − ε s e^{-\varepsilon{s}} eεs一阶展开展开得 e − ε s = 1 − ε s + o ( ε s ) e^{-\varepsilon{s}}=1-{\varepsilon{s}}+o({\varepsilon{s}}) eεs=1εs+o(εs)
代入上式得 L [ δ ( t ) ] = 1 L[\delta(t)]=1 L[δ(t)]=1

(2)单位阶跃信号 1 ( t ) 1(t) 1(t)

1 ( t ) = { 1 t > 0 0 t ≤ 0 1(t)=\begin{cases} 1 & t>0 \\ 0 & t\le0 \end{cases} 1(t)={10t>0t0
进行拉氏变换:
L [ 1 ( t ) ] = ∫ 0 ∞ e − s t d t = − 1 s e − s t ∣ 0 ∞ = 1 s L[1(t)]=\int_{0}^{\infty}e^{-st}dt=-{\frac{1}{s}}e^{-st}|_{0}^{\infty}=\frac{1}{s} L[1(t)]=0estdt=s1est0=s1

(3)单位斜坡(速度)信号

r ( t ) = t          t ≥ 0 r(t)=t~~~~~~~~t\ge0 r(t)=t        t0
进行拉氏变换:
L [ r ( t ) ] = ∫ 0 ∞ t e − s t d t = − ∫ 0 ∞ 1 s t d ( e − s t ) = − 1 s t e − s t ∣ 0 ∞ + 1 s ∫ 0 ∞ e − s t d t = 1 s 2 L[r(t)]=\int_{0}^{\infty}te^{-st}dt=-\int_{0}^{\infty}\frac{1}{s}td(e^{-st})=-\frac{1}{s}te^{-st}|_{0}^{\infty}+\frac{1}{s}\int_{0}^{\infty}e^{-st}dt=\frac{1}{s^2} L[r(t)]=0testdt=0s1td(est)=s1test0+s10estdt=s21

(4)单位加速度信号

r ( t ) = t 2 2          t ≥ 0 r(t)=\frac{t^2}{2}~~~~~~~~t\ge0 r(t)=2t2        t0
进行拉氏变换:
L [ r ( t ) ] = 1 2 ∫ 0 ∞ t 2 e − s t d t = − 1 2 ∫ 0 ∞ 1 s t 2 d ( e − s t ) = − 1 2 s t 2 e − s t ∣ 0 ∞ + 1 s ∫ 0 ∞ t e − s t d t = 1 s 3 L[r(t)]=\frac{1}{2}\int_{0}^{\infty}t^2e^{-st}dt=-\frac{1}{2}\int_{0}^{\infty}\frac{1}{s}t^2d(e^{-st})=-\frac{1}{2s}t^2e^{-st}|_{0}^{\infty}+\frac{1}{s}\int_{0}^{\infty}te^{-st}dt=\frac{1}{s^3} L[r(t)]=210t2estdt=210s1t2d(est)=2s1t2est0+s10testdt=s31

(5)正弦信号

r ( t ) = A s i n w t r(t)=Asinwt r(t)=Asinwt
根据欧拉公式 e j w t = c o s w t + j s i n w t e^{jwt}=coswt+jsinwt ejwt=coswt+jsinwt
得出 s i n w t = e j w t − e − j w t 2 j sinwt=\frac{e^{jwt}-e^{-jwt}}{2j} sinwt=2jejwtejwt
进行拉氏变换:
L [ r ( t ) ] = 1 2 j ∫ 0 ∞ ( e j w t − e − j w t ) e − s t d t = 1 2 j ∫ 0 ∞ e ( j w − s ) t − e − ( j w + s ) t d t L[r(t)]=\frac{1}{2j}\int_{0}^{\infty}(e^{jwt}-e^{-jwt})e^{-st}dt=\frac{1}{2j}\int_{0}^{\infty}e^{(jw-s)t}-e^{-(jw+s)t}dt L[r(t)]=2j10(ejwtejwt)estdt=2j10e(jws)te(jw+s)tdt
= 1 2 j [ 1 j w − s e ( j w − s ) t ∣ 0 ∞ + 1 j w + s e − ( j w + s ) t ∣ 0 ∞ ] = 1 2 j ( 1 s − j w − 1 s + j w ) = w s 2 + w 2 =\frac{1}{2j}[\frac{1}{jw-s}e^{(jw-s)t}|_{0}^{\infty}+\frac{1}{jw+s}e^{-(jw+s)t}|_{0}^{\infty}]=\frac{1}{2j}(\frac{1}{s-jw}-\frac{1}{s+jw})=\frac{w}{s^2+w^2} =2j1[jws1e(jws)t0+jw+s1e(jw+s)t0]=2j1(sjw1s+jw1)=s2+w2w

  • 9
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值