池化层-Pooling(CNN卷积神经网络)

汇聚层(池化层)

本节将介绍汇聚(pooling)层(又名池化层),它具有双重目的:

1.降低卷积层对位置的敏感性

2.同时降低对空间降采样表示的敏感性。

最大汇聚层和平均汇聚层

简单地讲, 最大汇聚层就是找到窗口内的最大值Max, 平均汇聚层就是找到窗口内的平均值Avg

与卷积层类似,汇聚层运算符由一个固定形状的窗口组成,该窗口根据其步幅大小在输入的所有区域上滑动,为固定形状窗口(有时称为汇聚窗口)遍历的每个位置计算一个输出。 然而,不同于卷积层中的输入与卷积核之间的互相关计算,汇聚层不包含参数。相反,池运算是确定性的,我们通常计算汇聚窗口中所有元素的最大值或平均值。这些操作分别称为最大汇聚层(maximum pooling)和平均汇聚层(average pooling)

在这两种情况下,与互相关运算符一样,汇聚窗口从输入张量的左上角开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚层还是平均汇聚层。

在这里插入图片描述

上图中输出张量的高度为 2 2 2 ,宽度为 2 2 2 。这四个元素为每个汇聚窗口中的最大值:

m a x ( 0 , 1 , 3 , 4 ) = 4 , m a x ( 1 , 2 , 4 , 5 ) = 5 , m a x ( 3 , 4 , 6 , 7 ) = 7 , m a x ( 4 , 5 , 7 , 8 ) = 8. max(0,1,3,4) = 4, \\ max(1,2,4,5) = 5, \\ max(3,4,6,7) = 7, \\ max(4,5,7,8) = 8. \\ max(0,1,3,4)=4,max(1,2,4,5)=5,max(3,4,6,7)=7,max(4,5,7,8)=8.

汇聚窗口形状为 p × q p \times q p×q 的汇聚层称为 p × q p \times q p×q 汇聚层,汇聚操作称为 p × q p \times q p×q 汇聚。

现在我们将使用卷积层的输出作为 2 × 2 2 \times 2 2×2 最大汇聚的输入。 设置卷积层输入为X,汇聚层输出为Y。 无论 X[i, j] 和 X[i, j + 1] 的值相同与否,或 X[i, j + 1] 和 X[i, j + 2] 的值相同与否,汇聚层始终输出 Y[i, j] = 1。 也就是说,使用 2 × 2 2 \times 2 2×2 最大汇聚层,即使在高度或宽度上移动一个元素,卷积层仍然可以识别到模式。

在下面的代码中的pool2d函数,我们实现汇聚层的前向传播。这类似前面的corr2d函数。 然而,这里我们没有卷积核,输出为输入中每个区域的最大值或平均值

import torch
from torch import nn
from d2l import torch as d2l

#定义池化层函数
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    
    return Y

我们可以构建上图的输入张量X,验证二维最大汇聚层的输出

X = torch.tensor([[0.0,1.0,2.0], [3.0,4.0,5.0], [6.0,7.0,8.0]])
pool_res = pool2d(X, (2, 2))
pool_res
tensor([[4., 5.],
        [7., 8.]])

此外,我们还可以验证平均汇聚层。

pool2d(X, (2,2), 'avg')
tensor([[2., 3.],
        [5., 6.]])

填充和步幅

与卷积层一样,汇聚层也可以改变输出形状。

和以前一样,我们可以通过填充和步幅以获得所需的输出形状。 下面,我们用深度学习框架中内置的二维最大汇聚层,来演示汇聚层中填充和步幅的使用。

我们首先构造了一个输入张量X,它有四个维度,其中样本数和通道数都是1。

X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])

默认情况下,深度学习框架中的步幅与汇聚窗口的大小相同。 因此,如果我们使用形状为(3, 3)的汇聚窗口,那么默认情况下,我们得到的步幅形状为(3, 3)。

pool2d = nn.MaxPool2d(3)
pool2d(X)
tensor([[[[10.]]]])

填充和步幅可以手动设定。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

当然,我们可以设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽度。

pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

多个通道

在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。 这意味着汇聚层的输出通道数与输入通道数相同。 下面,我们将在通道维度上连结张量X和X + 1,以构建具有2个通道的输入。

X = torch.cat((X, X+1), 1)                           #1代表扩展每一行, 0代表扩展每一列
X, X.shape
(tensor([[[[ 0.,  1.,  2.,  3.],
           [ 4.,  5.,  6.,  7.],
           [ 8.,  9., 10., 11.],
           [12., 13., 14., 15.]],
 
          [[ 1.,  2.,  3.,  4.],
           [ 5.,  6.,  7.,  8.],
           [ 9., 10., 11., 12.],
           [13., 14., 15., 16.]]]]),
 torch.Size([1, 2, 4, 4]))

如下所示,汇聚后输出通道的数量仍然是2。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5.,  7.],
          [13., 15.]],

         [[ 6.,  8.],
          [14., 16.]]]])

小结

1、对于给定输入元素,最大汇聚层会输出该窗口内的最大值,平均汇聚层会输出该窗口内的平均值。

2、汇聚层的主要优点之一是减轻卷积层对位置的过度敏感。

3、我们可以指定汇聚层的填充和步幅。

4、使用最大汇聚层以及大于1的步幅,可减少空间维度(如高度和宽度)。

5、汇聚层的输出通道数与输入通道数相同。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
ROI Pooling层是一种在深度学习中常用的空间金字塔池化技术,主要用于目标检测和物体识别任务。ROI是“Region of Interest”的缩写,指的是图像中包含有我们想要检测或识别的物体的区域。 在传统的卷积神经网络中,池化层的目的是通过降维来减少计算量并且提取图像特征。然而,对于目标检测任务来说,不同物体的大小和形状是多样的,直接对整个图像进行池化可能会导致信息的丢失。而ROI Pooling层的出现解决了这个问题。 ROI Pooling层分为两个步骤:首先,根据预测的物体位置和大小,将图像分割为一系列特定大小的固定区域。然后,在每个区域中进行池化操作。具体来说,ROI Pooling层划分固定大小的网格,然后将每个网格内的特征图划分为均等的子区域(通常是2x2的网格)。在每个子区域内执行最大池化操作,得到每个子区域的最大值。最后,这些最大值被串接起来形成ROI Pooling层的输出。 通过ROI Pooling层的操作,不同大小和形状的物体可以被映射到固定的尺寸,从而保留了物体的空间信息。这对于物体的位置和尺度不变性是非常重要的。ROI Pooling层的输出可以作为后续分类器的输入,用于检测和识别图像中的物体。 总之,ROI Pooling层是一种用于目标检测和物体识别任务的网络层,它可以将图像中感兴趣的区域映射到固定尺寸,并保留了物体的空间信息。这个层的出现极大地提高了物体检测和识别的准确性和可靠性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gaolw1102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值