横滚、俯仰、偏航角各自的定义是什么呢?
横滚(Roll)、俯仰(Pitch)和偏航(Yaw)角是用于描述物体在三维空间中姿态的常用角度,它们在航空航天、机器人、车辆工程等众多领域有着广泛的应用。以下是对这三个角度的详细定义:
横滚角(Roll)
- 定义:横滚角描述的是物体绕自身纵轴(通常是从前向后的轴,在飞行器中就是机身的中轴线)的旋转角度。当物体进行横滚运动时,其左右两侧会发生上下的相对运动。
- 示例:在飞机飞行中,横滚运动表现为飞机左翼向上抬起、右翼向下压低,或者反之。横滚角为正表示飞机向左翻滚,横滚角为负则表示飞机向右翻滚。在机器人领域,如果机器人是类似车辆的形态,横滚角可以描述机器人左右倾斜的程度。
俯仰角(Pitch)
- 定义:俯仰角是指物体绕自身横轴(通常是从左到右的轴)的旋转角度。物体进行俯仰运动时,其头部(前端)和尾部(后端)会发生上下的相对运动。
- 示例:对于飞机而言,当飞机的机头向上抬起、机尾向下压低时,俯仰角为正;当机头向下俯冲、机尾向上抬起时,俯仰角为负。在汽车中,俯仰角可以描述汽车在行驶过程中车头的上下起伏情况,比如汽车加速时车头可能会上扬,减速时车头可能会下沉。
偏航角(Yaw)
- 定义:偏航角是物体绕自身垂直轴(通常是从下向上的轴)的旋转角度。物体进行偏航运动时,其头部(前端)会左右转动。
- 示例:在飞机飞行过程中,偏航运动表现为飞机机头向左或向右转动。偏航角为正表示机头向左转动,偏航角为负表示机头向右转动。在地面车辆中,偏航角可以描述车辆行驶方向的改变,比如车辆转弯时就涉及偏航运动。
坐标系与旋转顺序
在实际应用中,横滚、俯仰、偏航角的定义通常基于一个特定的坐标系,常见的是右手坐标系。并且,这三个角度的旋转顺序会影响最终的姿态表示,常见的旋转顺序有 ZYX 顺序(先绕 Z 轴偏航,再绕 Y 轴俯仰,最后绕 X 轴横滚)等。不同的应用场景可能会采用不同的旋转顺序,因此在使用这些角度时需要明确所采用的坐标系和旋转顺序。