odd ratio置信区间的计算,你学会了吗?

本文介绍了Odd Ratio(OR)的概念及其计算方法,通过案例解释了如何从基因型统计数据中得到OR值。重点讲述了OR置信区间的计算,包括取log转换、计算标准误,并给出了95%置信区间的计算公式。文中还提到了逻辑回归中的BETA值与OR值的关系,并提供了R代码示例来验证计算过程。此外,文章还提及了相关分析方法如Cochran-Mantel-Haenszel检验和基因型填充等生信分析话题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注”生信修炼手册”!

odd ratio称之为交叉乘积比,对于如下所示的数据

Allele A a
Case a b
Control c d

其计算公式如下

这里的A表示minor alllel, a表示major allel,以major allel为参照,用minor alllel的频数去除以参照的频数。然后用case组的比值除以control组的比值就可以得到odd ratio的值了。

那么odd ratio的置信区间如何计算呢?首先将odd raio值取log, 然后用log odd raio来进行分析,计算其标准误,公式如下

对于95%的置信区间,直接套用公式进行计算

rs4970383为例,显性模型中基因型统计如下

genotype AA+Aa aa
Case 9 3
Control 5 7

隐性模型中基因型统计如下

genotype AA Aa + aa
Case 1 11
Control 2 10

其OR值和对应的置信区间结果如下

在R中用上述公式进行计算,代码如下

可以看到,结果完全一致。对于其他的置信区间,只需要将95%对应的1.96换成其他系数即可。对于如下所示的钟型曲线,根据置信度计算两侧的概率累计值

然后求解对应的z值即可,计算方法如下

值得强调的是,逻辑回归中的回归系数就是log odd raio,所以对比plink逻辑回归输出的OR和BETA值,可以发现,将OR值取log之后就是BETA值

在R中进行验证

这里我们可以得出结论,OR值置信区间的计算实际上就是根据逻辑回归的回归系数,即log odd ratio推导出来的。

·end·

—如果喜欢,快分享给你的朋友们吧—

往期精彩

  基因型填充

  CNV分析

### 使用 Stata 实现二元 Logistic 回归模型 为了在 Stata 中实现二元 logistic 回归模型,可以按照如下方法操作。该过程涉及加载数据集、定义变量以及运行回归命令。 #### 加载并查看数据 首先确保已经安装了必要的包,并准备好所需的数据文件。接着通过 `use` 或者 `import excel/csv` 来导入外部数据源: ```stata * 导入CSV文件作为工作数据集 import delimited "path_to_your_file.csv", clear ``` #### 描述性统计与探索 了解数据结构对于后续建模非常重要,在此阶段可以通过简单的描述性和可视化手段来初步认识各个特征间的关联程度: ```stata summarize varname1 varname2 ... histogram outcome_variable, by(predictor_variable) ``` #### 进行二元Logistic回归分析 当准备就绪之后就可以调用 `logit` 或者更常用的 `logistic` 命令来进行实际的拟合计算了。这里假设有一个名为 `outcome` 的二分类响应变量(0/1),还有几个预测因子如 `age`, `gender` 等: ```stata * 执行二元逻辑回归 logistic outcome age gender other_predictors... ``` 如果希望得到更加详细的输出结果,则可以在上述基础上加上选项参数;比如想要获得优势比及其置信区间的话,只需简单修改为下面的形式即可: ```stata * 获取ORs (Odds Ratios) 和95% CI logistic outcome i.gender c.age ... , or ``` 注意这里的语法细节:使用前缀 `i.` 表明这是一个分类型自变量而 `c.` 则用于连续型自变量[^1]。 #### 解读结果 执行完以上指令后将会显示一系列关于估计系数的信息表格,其中最重要的是最后一栏——Exp(B),它代表的就是每个解释变量对应于目标事件发生的几率变化倍数或者说奇比率(Odd Ratio)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值