你没看错,搞定GWAS meta分析只需一行代码!

本文介绍了METAL工具在基因组广泛关联研究(GWAS)meta分析中的应用,包括软件安装、配置文件编写和两种分析算法:基于p值和基于标准误。METAL支持对多个GWAS结果进行综合分析,通过增加样本量提升检验效能,并帮助发现新的关联位点。配置文件需指定每项研究的GWAS结果列标题和分隔符,以便正确识别数据。完成配置后,通过命令行执行分析。输出结果可用于筛选显著关联的位点,从而深入理解基因与疾病的关系。
摘要由CSDN通过智能技术生成

欢迎关注”生信修炼手册”!

METAL是gwas meta分析最常用的工具之一,官网如下

https://genome.sph.umich.edu/wiki/METAL

该软件的安装非常简单,直接下载编译好的二进制文件即可,安装过程如下

wget http://csg.sph.umich.edu/abecasis/metal/download/Linux-metal.tar.gz
tar xzvf Linux-metal.tar.gz
cd generic-metal/

在安装目录,有一个名为metal的可执行文件,该程序用法很简单,只需要编写一个配置文件,然后执行即可,所以关键在于配置文件的编写。在软件的安装目录,有一个名为example的文件夹,提供了两个示例,其中的metal.txt就是配置文件。

meta-analysis是对多个gwas分析结果进行综合评价,该软件支持以下两种meta分析的算法

  1. pvalue

  2. standard error

第一种是基于p值;第二种是基于标准误,我们知道标准误指的是某个统计量的分布,在使用第二种算法时,需要提供对应的统计量,即Effect, 以逻辑回归/线性回归为例,Effect对应的就是回归系数BETA, 标准误对应的就是回归系数的SE。

每种算法要求的gwas分析结果的格式稍有不同,其中以下3列是必须有的

  1. SNP对应的id或者rs号

  2. test allele

  3. other allele

在关联分析的结果中,会有OR值来表征关联强弱,而OR值是一个比值,分子除以分母,分子对应的allele为test allele, 分母对应的allele为other allele。

基于pvalue的算法,额外要求以下3列

  1. Pvalue

  2. 表示test allele和疾病关联方向的列,有正相关和负相关两种,以OR值为例,大于1为危险因素,小于1为保护因素,当时,为了能够区分正负,OR值需要取log

  3. 可选的列,表示样本的大小,根据每个数据集的样本大小来进行加权

基于标准误的算法,额外要求以下2列

  1. effect

  2. standard error

前文已经给过解释,effect对应回归分析中的回归系数beta值,standard error对应回归系数的SE。

在配置文件中共,我们需要指定每个study的GWAS结果中上述列对应的标题,以及文件分隔符等选项,这样才能保证软件正确的识别所需的信息,一个配置文件的示例如下

配置好之后,只需执行以下命令即可进行分析

metal metal.config.txt

输出结果示意如下

通过输出结果中的pvalue,来筛选显著关联的位点,通过gwas meta-analysis, 可以达到增加样本量,提高检验效能的目的,而且有助于发现新的关联位点。

·end·

—如果喜欢,快分享给你的朋友们吧—

往期精彩

  基因型填充

  CNV分析

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值