使用支持向量机SVM进行分类

欢迎关注”生信修炼手册”!

SVM, 全称为support vector machines,  翻译过来就是支持向量机。该算法最常见的应用场景就是解决二分类问题,当然也可以用于回归和异常值检测。

首先来理解下什么叫做支持向量,以下图为例

图中的点分为了红色矩形和蓝色圆形两大类,SVM的目标是找出一条直线,可以将这两类点区分开来。和线性回归类似,可以看到,这样的直线理论上会有多条。为了从其中的筛选出一个的解,就像最小二乘法一样,我们需要引入一个可以量化的指标来描述不同直线的分类效果。

在SVM中就是通过引入分类间隔这个指标来进行评估,在上图中,中间的绿色实线是用于分类的直线,两边的虚线构成了分类间隔,在分类间隔上的样本点所构成的向量,就叫做支持向量了。

为何只考虑了分类间隔上的点呢,是因为往往就是在分类直线附件的点容易造成误判,而距离很远的点,即使不同的分类直线,其分类的效果也是相等的。所以定义了分类间隔来量化分类直线的效果。分类间隔越大,该分类直线的效果就越好。

以上只是线性可分时的情况,对于线性不可分的情况,就无法直接使用分类间隔了,此时的做法是通过核函数来升维,如下图所示

在二维平面上,红色点和绿色点无法通过一条直线隔开,此时的基本思想是升维,在高维寻找一个分类的平面。升维的方法是通过核函数,所谓核函数,就是对原有变量的一个组合函数,在下图中通过两个变量乘积的这一核函数来进行升维

升维之后在三维空间来寻找一个分类的平面,此时依然是通过分类间隔来评估分类平面的效果。可以看到,不同的核函数会扩展出不同维度的空间,对分类平面的求解会造成直接影响。

对于机器学习模型的求解,核心是最值问题,根据条件的不同,可以划分为3大类场景

1. 无约束条件的最值求解

2. 等式约束条件下的最值求解

3. 不等式约束条件下的最值求解

每种场景有对应的不同解法,对于无约束的最值求解,直接导数为零即可,比如最小二乘法;对于等式约束的最值求解,通常采用拉格朗日乘数法;对于不等式约束下的最值求解,则采用KKT条件和拉格朗日乘数法的结合;而SVM就属于第三种场景。

在scikit-learn中,提供了方便的接口来调用SVM模型,代码如下

&g
  • 3
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值