欢迎关注”生信修炼手册”!
在之前meta分析的文章中我们介绍了森林图的画法,典型的森林图如下所示
每一行表示一个study,用errorbar展示log odds ratio值的分布,并将p值和m值标记在图中。森林图主要用于多个study的分析结果的汇总展示。
在构建预后模型时,通常会先对所有基因进行单变量cox回归,然后筛选其中显著的基因进行多变量cox回归来建模,对于cox回归的结果,每个基因也都会有一hazard ratio和对应的p值,也可以用森林图的形式来展现,比如NAD+的文献中就采用了这样的一张森林图
每一行表示一个变量,用errorbar展示该变量对应的风险值的大小和置信区间,并将风险值和p值标记在图上。
根据cox生存分析的结果绘制森林图有多种方式,使用survminer包的ggforest函数,是最简便的一种,代码如下
> library(survminer)
> require("survival")
> model <- coxph( Surv(time, status) ~ sex + rx + adhere,
+ data = colon )
> model
Call:
coxph(formula = Surv(time, status) ~ sex + rx + adhere, data = colon)
coef exp(coef) se(coef) z p
sex -0.04615 0.95490 0.06609 -0.698 0.484994
rxLev -0.02724 0.97313 0.07690 -0.354 0.723211
rxLev+5FU -0.43723 0.64582 0.08395 -5.208 1.91e-07
adhere 0.29355 1.34118 0.08696 3.376 0.000736
Likelihood ratio te